Risk-Sensitive Mean Field Games via the Stochastic Maximum Principle

被引:21
作者
Moon, Jun [1 ]
Basar, Tamer [2 ]
机构
[1] UNIST, Sch Elect & Comp Engn, Ulsan 44919, South Korea
[2] Univ Illinois, Coordinated Sci Lab, Urbana, IL 61801 USA
基金
新加坡国家研究基金会;
关键词
Mean field game theory; Risk-sensitive optimal control; Forward-backward stochastic differential equations; Decentralized control; DIFFERENTIAL-EQUATIONS; CONSENSUS PROBLEMS; NASH; SYSTEMS; DYNAMICS;
D O I
10.1007/s13235-018-00290-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider risk-sensitive mean field games via the risk-sensitive maximum principle. The problem is analyzed through two sequential steps: (i) risk-sensitive optimal control for a fixed probability measure, and (ii) the associated fixed-point problem. For step (i), we use the risk-sensitive maximum principle to obtain the optimal solution, which is characterized in terms of the associated forward-backward stochastic differential equation (FBSDE). In step (ii), we solve for the probability law induced by the state process with the optimal control in step (i). In particular, we show the existence of the fixed point of the probability law of the state process determined by step (i) via Schauder's fixed-point theorem. After analyzing steps (i) and (ii), we prove that the set of N optimal distributed controls obtained from steps (i) and (ii) constitutes an approximate Nash equilibrium or epsilon\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document}-Nash equilibrium for the N player risk-sensitive game, where epsilon -> 0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon \rightarrow 0$$\end{document} as N ->infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N \rightarrow \infty $$\end{document} at the rate of O(1N1/(n+4))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\frac{1}{N<^>{1/(n+4)}})$$\end{document}. Finally, we discuss extensions to heterogeneous (non-symmetric) risk-sensitive mean field games.
引用
收藏
页码:1100 / 1125
页数:26
相关论文
共 68 条
[31]  
Fleming W.H., 1975, Deterministic and Stochastic Optimal Control, DOI [DOI 10.1007/978-1-4612-6380-7, 10.1007/978-1-4612-6380-7]
[32]   The risk-sensitive index and the H-2 and H-infinity norms for nonlinear systems [J].
Fleming, WH ;
James, MR .
MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 1995, 8 (03) :199-221
[33]   MEAN RATES OF CONVERGENCE OF EMPIRICAL MEASURES IN THE WASSERSTEIN METRIC [J].
HOROWITZ, J ;
KARANDIKAR, RJ .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1994, 55 (03) :261-273
[34]   Linear-Quadratic Mean-Field Game for Stochastic Delayed Systems [J].
Huang, Jianhui ;
Li, Na .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2018, 63 (08) :2722-2729
[35]  
Huang MY, 2006, COMMUN INF SYST, V6, P221
[36]   Large-population cost-coupled LQG problems with nonuniform agents:: Individual-mass behavior and decentralized ε-Nash equilibria [J].
Huang, Minyi ;
Caines, Peter E. ;
Malhame, Roland P. .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2007, 52 (09) :1560-1571
[37]   LARGE-POPULATION LQG GAMES INVOLVING A MAJOR PLAYER: THE NASH CERTAINTY EQUIVALENCE PRINCIPLE [J].
Huang, Minyi .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2010, 48 (05) :3318-3353
[38]  
Huang MY, 2003, 42ND IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-6, PROCEEDINGS, P98
[40]  
Jourdain B, 2008, ALEA-LAT AM J PROBAB, V4, P1