Over 15% Efficiency PbS Quantum-Dot Solar Cells by Synergistic Effects of Three Interface Engineering: Reducing Nonradiative Recombination and Balancing Charge Carrier Extraction

被引:130
作者
Ding, Chao [1 ]
Wang, Dandan [1 ]
Liu, Dong [1 ]
Li, Hua [1 ]
Li, Yusheng [1 ]
Hayase, Shuzi [2 ]
Sogabe, Tomah [1 ]
Masuda, Taizo [1 ,3 ]
Zhou, Yong [4 ]
Yao, Yingfang [4 ]
Zou, Zhigang [4 ]
Wang, Ruixiang [5 ]
Shen, Qing [1 ]
机构
[1] Univ Electrocommun, Fac Informat & Engn, 1-5-1 Chofugaoka, Chofu, Tokyo 1828585, Japan
[2] Univ Electrocommun, Infopowered Energy Syst Res Ctr I PERC, 1-5-1 Chofugaoka, Chofu, Tokyo 1828585, Japan
[3] Toyota Motor Co Ltd, CN Dev Div, Shizuoka 4101193, Japan
[4] Nanjing Univ, Jiangsu Key Lab Nano Technol, Ecomat & Renewable Energy Res Ctr ERERC, Nanjing 210093, Peoples R China
[5] Beijing Univ Civil Engn & Architecture, Beijing Engn Res Ctr Sustainable Energy & Bldg, 15 Yongyuan Rd, Beijing 102616, Peoples R China
基金
国家重点研发计划; 日本科学技术振兴机构;
关键词
charge carrier extraction; interface engineering; nonradiative recombination; PbS quantum-dot solar cells; ELECTRON-TRANSPORT-LAYER; LIGHT-EMITTING-DIODES; PERFORMANCE; INKS; PHOTOVOLTAICS; MECHANISM; JUNCTION; STATES; PCBM;
D O I
10.1002/aenm.202201676
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lead sulfide colloidal quantum dot solar cells (CQDSCs), the next generation of photovoltaics, are hampered by non-radiative recombination induced by defects and an electron-hole extraction imbalance. CQDSCs have three interfaces: CQD/CQD, electron transport layer (ETL)/CQD, and CQD/hole transport layer (HTL), and modifying one of these interfaces does not fix the problem stated above. Here, coordinated control and passivation of the three interfaces in PbS CQDSCs are presented and it is shown that the synergistic effects may improve charge transport and charge carrier extraction balance and minimize non-radiative recombination simultaneously. A facile method is developed for epitaxially growing an ultrathin perovskite shell on the CQD surface to passivate the CQD/CQD interface, resulting in CQD absorber layers with long carrier diffusion lengths. With the introduction of organic films with adjustable electrical characteristics, the influence of ETL/CQD interfacial modifications on carrier transport and recombination is investigated. An excessive increase in the electron extraction rate reduces the fill factor and solar efficiency, as discovered. Therefore a modified layer is created at the CQD/HTL interface to promote hole extraction, which enhances charge extraction balance and passivates the interface. Finally, PbS CQDSCs exhibit a power conversion efficiency of 15.45%, a record for Pb chalcogenide CQDSCs.
引用
收藏
页数:16
相关论文
共 77 条
[1]   Efficient and Stable PbS Quantum Dot Solar Cells by Triple-Cation Perovskite Passivation [J].
Albaladejo-Siguan, Miguel ;
Becker-Koch, David ;
Taylor, Alexander D. ;
Sun, Qing ;
Lami, Vincent ;
Oppenheimer, Pola Goldberg ;
Paulus, Fabian ;
Vaynzof, Yana .
ACS NANO, 2020, 14 (01) :384-393
[2]   Efficient hybrid colloidal quantum dot/organic solar cells mediated by near-infrared sensitizing small molecules [J].
Baek, Se-Woong ;
Jun, Sunhong ;
Kim, Byeongsu ;
Proppe, Andrew H. ;
Ouellette, Olivier ;
Voznyy, Oleksandr ;
Kim, Changjo ;
Kim, Junho ;
Walters, Grant ;
Song, Jung Hoon ;
Jeong, Sohee ;
Byun, Hye Ryung ;
Jeong, Mun Seok ;
Hoogland, Sjoerd ;
de Arquer, F. Pelayo Garcia ;
Kelley, Shana O. ;
Lee, Jung-Yong ;
Sargent, Edward H. .
NATURE ENERGY, 2019, 4 (11) :969-976
[3]   Colloidal Quantum Dot Solar Cell Band Alignment using Two-Step Ionic Doping [J].
Bertens, Koen ;
Fan, James Z. ;
Biondi, Margherita ;
Rasouli, Armin Sedighian ;
Lee, Seungjin ;
Li, Peicheng ;
Sun, Bin ;
Hoogland, Sjoerd ;
de Arquer, F. Pelayo Garcia ;
Lu, Zheng-Hong ;
Sargent, Edward H. .
ACS MATERIALS LETTERS, 2020, 2 (12) :1583-1589
[4]   Control Over Ligand Exchange Reactivity in Hole Transport Layer Enables High-Efficiency Colloidal Quantum Dot Solar Cells [J].
Biondi, Margherita ;
Choi, Min-Jae ;
Lee, Seungjin ;
Bertens, Koen ;
Wei, Mingyang ;
Kirmani, Ahmad R. ;
Lee, Geonhui ;
Kung, Hao Ting ;
Richter, Lee J. ;
Hoogland, Sjoerd ;
Lu, Zheng-Hong ;
de Arquer, F. Pelayo Garcia ;
Sargent, Edward H. .
ACS ENERGY LETTERS, 2021, 6 (02) :468-476
[5]   A Chemically Orthogonal Hole Transport Layer for Efficient Colloidal Quantum Dot Solar Cells [J].
Biondi, Margherita ;
Choi, Min-Jae ;
Ouellette, Olivier ;
Baek, Se-Woong ;
Todorovic, Petar ;
Sun, Bin ;
Lee, Seungjin ;
Wei, Mingyang ;
Li, Peicheng ;
Kirmani, Ahmad R. ;
Sagar, Laxmi K. ;
Richter, Lee J. ;
Hoogland, Sjoerd ;
Lu, Zheng-Hong ;
de Arquer, F. Pelayo ;
Sargent, Edward H. .
ADVANCED MATERIALS, 2020, 32 (17)
[6]   Device physics of polymer:fullerene bulk heterojunction solar cells [J].
Blom, Paul W. M. ;
Mihailetchi, Valentin D. ;
Koster, L. Jan Anton ;
Markov, Denis E. .
ADVANCED MATERIALS, 2007, 19 (12) :1551-1566
[7]   Modelling polycrystalline semiconductor solar cells [J].
Burgelman, M ;
Nollet, P ;
Degrave, S .
THIN SOLID FILMS, 2000, 361 :527-532
[8]  
Chiang CH, 2016, NAT PHOTONICS, V10, P196, DOI [10.1038/NPHOTON.2016.3, 10.1038/nphoton.2016.3]
[9]   Role of additional PCBM layer between ZnO and photoactive layers in inverted bulk-heterojunction solar cells [J].
Cho, Shinuk ;
Kim, Kwang-Dae ;
Heo, Jinhee ;
Lee, Joo Yul ;
Cha, Gihoon ;
Seo, Bo Yeol ;
Kim, Young Dok ;
Kim, Yong Soo ;
Choi, Si-young ;
Lim, Dong Chan .
SCIENTIFIC REPORTS, 2014, 4
[10]   Balancing Charge Carrier Transport in a Quantum Dot P-N Junction toward Hysteresis-Free High-Performance Solar Cells [J].
Cho, Yuljae ;
Hou, Bo ;
Lim, Jongchul ;
Lee, Sanghyo ;
Pak, Sangyeon ;
Hong, John ;
Giraud, Paul ;
Jang, A-Rang ;
Lee, Young-Woo ;
Lee, Juwon ;
Jang, Jae Eun ;
Snaith, Henry J. ;
Morris, Stephen M. ;
Sohn, Jung Inn ;
Cha, SeungNam ;
Kim, Jong Min .
ACS ENERGY LETTERS, 2018, 3 (04) :1036-1043