Ballistic transport at room temperature in micrometer-size graphite flakes

被引:32
作者
Dusari, S. [1 ]
Barzola-Quiquia, J. [1 ]
Esquinazi, P. [1 ]
Garcia, N. [2 ]
机构
[1] Univ Leipzig, Inst Expt Phys 2, Div Superconduct & Magnetism, D-04103 Leipzig, Germany
[2] CSIC, Lab Fis Sistemas Pequenos & Nanotecnol, E-28006 Madrid, Spain
来源
PHYSICAL REVIEW B | 2011年 / 83卷 / 12期
关键词
SUSPENDED GRAPHENE; DIRAC-FERMIONS; BISMUTH; QUANTIZATION; NANORIBBONS; CONDUCTANCE; CONTACTS; PHASE; GAS;
D O I
10.1103/PhysRevB.83.125402
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The intrinsic values of the carriers mobility and density of the graphene layers inside graphite, the well-known structure built on these layers in the Bernal stacking configuration, are not well known mainly because most of the research was done in rather bulk samples where lattice defects hide their intrinsic values. By measuring the electrical resistance through microfabricated constrictions in micrometer small graphite flakes of a few tens of nanometers thickness we studied the ballistic behavior of the carriers. We found that the carriers' mean-free path is greater than or similar to 1 mu m large with a mobility mu similar or equal to 6 x 10(6) cm(2)/Vs and a carrier density n similar or equal to 7 x 10(8) cm(-2) per graphene layer at room temperature. These distinctive transport and ballistic properties have important implications for understanding the values obtained in single graphene and in graphite as well as for implementing this last in nanoelectronic devices.
引用
收藏
页数:6
相关论文
共 36 条
[1]   Electric carrier concentration in graphite: Dependence of electrical resistivity and magnetoresistance on defect concentration [J].
Arndt, A. ;
Spoddig, D. ;
Esquinazi, P. ;
Barzola-Quiquia, J. ;
Dusari, S. ;
Butz, T. .
PHYSICAL REVIEW B, 2009, 80 (19)
[2]   The influence of Ga+ irradiation on the transport properties of mesoscopic conducting thin films [J].
Barzola-Quiquia, J. ;
Dusari, S. ;
Bridoux, G. ;
Bern, F. ;
Molle, A. ;
Esquinazi, P. .
NANOTECHNOLOGY, 2010, 21 (14)
[3]   Sample size effects on the transport characteristics of mesoscopic graphite samples [J].
Barzola-Quiquia, J. ;
Yao, J. -L. ;
Roediger, P. ;
Schindler, K. ;
Esquinazi, P. .
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2008, 205 (12) :2924-2933
[4]   Ultrahigh electron mobility in suspended graphene [J].
Bolotin, K. I. ;
Sikes, K. J. ;
Jiang, Z. ;
Klima, M. ;
Fudenberg, G. ;
Hone, J. ;
Kim, P. ;
Stormer, H. L. .
SOLID STATE COMMUNICATIONS, 2008, 146 (9-10) :351-355
[5]   SHUBNIKOV-DE HAAS MEASUREMENTS IN BISMUTH [J].
BROWN, RD .
PHYSICAL REVIEW B, 1970, 2 (04) :928-&
[6]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[7]   Conductance quantization in bismuth nanowires at 4 K [J].
CostaKramer, JL ;
Garcia, N ;
Olin, H .
PHYSICAL REVIEW LETTERS, 1997, 78 (26) :4990-4993
[8]   Lattice field theory simulations of graphene [J].
Drut, Joaquin E. ;
Laehde, Timo A. .
PHYSICAL REVIEW B, 2009, 79 (16)
[9]   Metal-insulator-like behavior in semimetallic bismuth and graphite [J].
Du, X ;
Tsai, SW ;
Maslov, DL ;
Hebard, AF .
PHYSICAL REVIEW LETTERS, 2005, 94 (16)
[10]   Approaching ballistic transport in suspended graphene [J].
Du, Xu ;
Skachko, Ivan ;
Barker, Anthony ;
Andrei, Eva Y. .
NATURE NANOTECHNOLOGY, 2008, 3 (08) :491-495