A linear mixed-model approach to study multivariate gene-environment interactions

被引:104
|
作者
Moore, Rachel [1 ,2 ,3 ]
Casale, Francesco Paolo [4 ]
Bonder, Marc Jan [2 ]
Horta, Danilo [2 ]
Franke, Lude [5 ]
Barroso, Ines [1 ]
Stegle, Oliver [2 ,6 ,7 ]
机构
[1] Wellcome Sanger Inst, Wellcome Genome Campus, Cambridge, England
[2] European Bioinformat Inst, European Mol Biol Lab, Wellcome Genome Campus, Cambridge, England
[3] Univ Cambridge, Cambridge, England
[4] Microsoft Res New England, Cambridge, MA USA
[5] Univ Groningen, Dept Genet, Univ Med Ctr Groningen, Groningen, Netherlands
[6] European Mol Biol Lab, Genome Biol Unit, Heidelberg, Germany
[7] German Canc Res Ctr, Div Computat Genom & Syst Genet, Heidelberg, Germany
基金
英国惠康基金;
关键词
GENOME-WIDE ASSOCIATION; BODY-MASS INDEX; VARIANTS; OBESITY; MULTIPLE; TRAITS; TESTS; LOCI; BMI; SET;
D O I
10.1038/s41588-018-0271-0
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Different exposures, including diet, physical activity, or external conditions can contribute to genotype-environment interactions (GxE). Although high-dimensional environmental data are increasingly available and multiple exposures have been implicated with GxE at the same loci, multi-environment tests for GxE are not established. Here, we propose the structured linear mixed model (StructLMM), a computationally efficient method to identify and characterize loci that interact with one or more environments. After validating our model using simulations, we applied StructLMM to body mass index in the UK Biobank, where our model yields previously known and novel GxE signals. Finally, in an application to a large blood eQTL dataset, we demonstrate that StructLMM can be used to study interactions with hundreds of environmental variables.
引用
收藏
页码:180 / +
页数:10
相关论文
共 50 条
  • [41] Detecting gene-environment interactions from multiple continuous traits
    Lin, Wan-Yu
    BIOINFORMATICS, 2024, 40 (07)
  • [42] Gene-environment interactions and obesity: recent developments and future directions
    Huang, Tao
    Hu, Frank B.
    BMC MEDICAL GENOMICS, 2015, 8
  • [43] Integrative analysis of gene-environment interactions under a multi-response partially linear varying coefficient model
    Wu, Cen
    Cui, Yuehua
    Ma, Shuangge
    STATISTICS IN MEDICINE, 2014, 33 (28) : 4988 - 4998
  • [44] Gene-environment interactions in chronic inflammatory disease
    Renz, Harald
    von Mutius, Erika
    Brandtzaeg, Per
    Cookson, William O.
    Autenrieth, Ingo B.
    Haller, Dirk
    NATURE IMMUNOLOGY, 2011, 12 (04) : 273 - 277
  • [45] Gene-environment interactions and type 2 diabetes
    Geng, Tingting
    Huang, Tao
    ASIA PACIFIC JOURNAL OF CLINICAL NUTRITION, 2020, 29 (02) : 220 - 226
  • [46] Gene-Environment Interactions in Progressive Supranuclear Palsy
    Litvan, Irene
    Proudfoot, James A.
    Martin, Eden R.
    Standaert, David
    Riley, David
    Hall, Deborah
    Marras, Connie
    Bayram, Ece
    Dubinsky, Richard M.
    Bordelon, Yvette
    Reich, Stephen
    Shprecher, David
    Kluger, Benzi
    Cunningham, Christopher
    Schellenberg, Gerard D.
    Jankovic, Joseph
    FRONTIERS IN NEUROLOGY, 2021, 12
  • [47] Statistical Tests of Genetic Association in the Presence of Gene-Gene and Gene-Environment Interactions
    Pan, Wei
    HUMAN HEREDITY, 2010, 69 (02) : 131 - 142
  • [48] Do gene-environment interactions have implications for the precision prevention of type 2 diabetes?
    Sorensen, Thorkild I. A.
    Metz, Sophia
    Kilpelainen, Tuomas O.
    DIABETOLOGIA, 2022, 65 (11) : 1804 - 1813
  • [49] Dissecting gene-environment interactions: A penalized robust approach accounting for hierarchical structures
    Wu, Cen
    Jiang, Yu
    Ren, Jie
    Cui, Yuehua
    Ma, Shuangge
    STATISTICS IN MEDICINE, 2018, 37 (03) : 437 - 456
  • [50] An Interdisciplinary Approach to Studying Gene-Environment Interactions: From Twin Studies to Gene Identification and Back
    Dick, Danielle M.
    RESEARCH IN HUMAN DEVELOPMENT, 2011, 8 (3-4) : 211 - 226