A linear mixed-model approach to study multivariate gene-environment interactions

被引:104
|
作者
Moore, Rachel [1 ,2 ,3 ]
Casale, Francesco Paolo [4 ]
Bonder, Marc Jan [2 ]
Horta, Danilo [2 ]
Franke, Lude [5 ]
Barroso, Ines [1 ]
Stegle, Oliver [2 ,6 ,7 ]
机构
[1] Wellcome Sanger Inst, Wellcome Genome Campus, Cambridge, England
[2] European Bioinformat Inst, European Mol Biol Lab, Wellcome Genome Campus, Cambridge, England
[3] Univ Cambridge, Cambridge, England
[4] Microsoft Res New England, Cambridge, MA USA
[5] Univ Groningen, Dept Genet, Univ Med Ctr Groningen, Groningen, Netherlands
[6] European Mol Biol Lab, Genome Biol Unit, Heidelberg, Germany
[7] German Canc Res Ctr, Div Computat Genom & Syst Genet, Heidelberg, Germany
基金
英国惠康基金;
关键词
GENOME-WIDE ASSOCIATION; BODY-MASS INDEX; VARIANTS; OBESITY; MULTIPLE; TRAITS; TESTS; LOCI; BMI; SET;
D O I
10.1038/s41588-018-0271-0
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Different exposures, including diet, physical activity, or external conditions can contribute to genotype-environment interactions (GxE). Although high-dimensional environmental data are increasingly available and multiple exposures have been implicated with GxE at the same loci, multi-environment tests for GxE are not established. Here, we propose the structured linear mixed model (StructLMM), a computationally efficient method to identify and characterize loci that interact with one or more environments. After validating our model using simulations, we applied StructLMM to body mass index in the UK Biobank, where our model yields previously known and novel GxE signals. Finally, in an application to a large blood eQTL dataset, we demonstrate that StructLMM can be used to study interactions with hundreds of environmental variables.
引用
收藏
页码:180 / +
页数:10
相关论文
共 50 条
  • [2] Multivariate partial linear varying coefficients model for gene-environment interactions with multiple longitudinal traits
    Wang, Honglang
    Zhang, Jingyi
    Klump, Kelly L.
    Burt, Sybil Alexandra
    Cui, Yuehua
    STATISTICS IN MEDICINE, 2022, 41 (19) : 3643 - 3660
  • [3] The heritable basis of gene-environment interactions in cardiometabolic traits
    Poveda, Alaitz
    Chen, Yan
    Brandstrom, Anders
    Engberg, Elisabeth
    Hallmans, Goran
    Johansson, Ingegerd
    Renstrom, Frida
    Kurbasic, Azra
    Franks, Paul W.
    DIABETOLOGIA, 2017, 60 (03) : 442 - 452
  • [4] A linear mixed model framework for gene-based gene-environment interaction tests in twin studies
    Coombes, Brandon J.
    Basu, Saonli
    McGue, Matt
    GENETIC EPIDEMIOLOGY, 2018, 42 (07) : 648 - 663
  • [5] Modeling Gene-Environment Interactions With Quasi-Natural Experiments
    Schmitz, Lauren
    Conley, Dalton
    JOURNAL OF PERSONALITY, 2017, 85 (01) : 10 - 21
  • [6] On meta- and mega-analyses for gene-environment interactions
    Huang, Jing
    Liu, Yulun
    Vitale, Steve
    Penning, Trevor M.
    Whitehead, Alexander S.
    Blair, Ian A.
    Vachani, Anil
    Clapper, Margie L.
    Muscat, Joshua E.
    Lazarus, Philip
    Scheet, Paul
    Moore, Jason H.
    Chen, Yong
    GENETIC EPIDEMIOLOGY, 2017, 41 (08) : 876 - 886
  • [7] Key Considerations and Methods in the Study of Gene-Environment Interactions
    Simon, Paul H. G.
    Sylvestre, Marie-Pierre
    Tremblay, Johanne
    Hamet, Pavel
    AMERICAN JOURNAL OF HYPERTENSION, 2016, 29 (08) : 891 - 899
  • [8] Gene-Environment Interactions for Cardiovascular Disease
    Hartiala, Jaana A.
    Hilser, James R.
    Biswas, Subarna
    Lusis, Aldons J.
    Allayee, Hooman
    CURRENT ATHEROSCLEROSIS REPORTS, 2021, 23 (12)
  • [9] Gene-Environment Interactions on Body Fat Distribution
    Li, Xiang
    Qi, Lu
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2019, 20 (15)
  • [10] Gene-Environment Interactions and Cardiovascular Risk Factors
    Ordovas, Jose M.
    REVISTA ESPANOLA DE CARDIOLOGIA, 2009, : 39B - 51B