A linear mixed-model approach to study multivariate gene-environment interactions

被引:108
作者
Moore, Rachel [1 ,2 ,3 ]
Casale, Francesco Paolo [4 ]
Bonder, Marc Jan [2 ]
Horta, Danilo [2 ]
Franke, Lude [5 ]
Barroso, Ines [1 ]
Stegle, Oliver [2 ,6 ,7 ]
机构
[1] Wellcome Sanger Inst, Wellcome Genome Campus, Cambridge, England
[2] European Bioinformat Inst, European Mol Biol Lab, Wellcome Genome Campus, Cambridge, England
[3] Univ Cambridge, Cambridge, England
[4] Microsoft Res New England, Cambridge, MA USA
[5] Univ Groningen, Dept Genet, Univ Med Ctr Groningen, Groningen, Netherlands
[6] European Mol Biol Lab, Genome Biol Unit, Heidelberg, Germany
[7] German Canc Res Ctr, Div Computat Genom & Syst Genet, Heidelberg, Germany
基金
英国惠康基金;
关键词
GENOME-WIDE ASSOCIATION; BODY-MASS INDEX; VARIANTS; OBESITY; MULTIPLE; TRAITS; TESTS; LOCI; BMI; SET;
D O I
10.1038/s41588-018-0271-0
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Different exposures, including diet, physical activity, or external conditions can contribute to genotype-environment interactions (GxE). Although high-dimensional environmental data are increasingly available and multiple exposures have been implicated with GxE at the same loci, multi-environment tests for GxE are not established. Here, we propose the structured linear mixed model (StructLMM), a computationally efficient method to identify and characterize loci that interact with one or more environments. After validating our model using simulations, we applied StructLMM to body mass index in the UK Biobank, where our model yields previously known and novel GxE signals. Finally, in an application to a large blood eQTL dataset, we demonstrate that StructLMM can be used to study interactions with hundreds of environmental variables.
引用
收藏
页码:180 / +
页数:10
相关论文
共 50 条
[1]   FlashPCA2: principal component analysis of Biobank-scale genotype datasets [J].
Abraham, Gad ;
Qiu, Yixuan ;
Inouye, Michael .
BIOINFORMATICS, 2017, 33 (17) :2776-2778
[2]   Established BMI-associated genetic variants and their prospective associations with BMI and other cardiometabolic traits: the GLACIER Study [J].
Ahmad, S. ;
Poveda, A. ;
Shungin, D. ;
Barroso, I. ;
Hallmans, G. ;
Renstrom, F. ;
Franks, P. W. .
INTERNATIONAL JOURNAL OF OBESITY, 2016, 40 (09) :1346-1352
[3]   Gene x Physical Activity Interactions in Obesity: Combined Analysis of 111,421 Individuals of European Ancestry [J].
Ahmad, Shafqat ;
Rukh, Gull ;
Varga, Tibor V. ;
Ali, Ashfaq ;
Kurbasic, Azra ;
Shungin, Dmitry ;
Ericson, Ulrika ;
Koivula, Robert W. ;
Chu, Audrey Y. ;
Rose, Lynda M. ;
Ganna, Andrea ;
Qi, Qibin ;
Stancakova, Alena ;
Sandholt, Camilla H. ;
Elks, Cathy E. ;
Curhan, Gary ;
Jensen, Majken K. ;
Tamimi, Rulla M. ;
Allin, Kristine H. ;
Jorgensen, Torben ;
Brage, Soren ;
Langenberg, Claudia ;
Aadahl, Mette ;
Grarup, Niels ;
Linneberg, Allan ;
Pare, Guillaume ;
Magnusson, Patrik K. E. ;
Pedersen, Nancy L. ;
Boehnke, Michael ;
Hamsten, Anders ;
Mohlke, Karen L. ;
Pasquale, Louis T. ;
Pedersen, Oluf ;
Scott, Robert A. ;
Ridker, Paul M. ;
Ingelsson, Erik ;
Laakso, Markku ;
Hansen, Torben ;
Qi, Lu ;
Wareham, Nicholas J. ;
Chasman, Daniel I. ;
Hallmans, Goran ;
Hu, Frank B. ;
Renstrom, Frida ;
Orho-Melander, Marju ;
Franks, Paul W. .
PLOS GENETICS, 2013, 9 (07)
[4]   A global reference for human genetic variation [J].
Altshuler, David M. ;
Durbin, Richard M. ;
Abecasis, Goncalo R. ;
Bentley, David R. ;
Chakravarti, Aravinda ;
Clark, Andrew G. ;
Donnelly, Peter ;
Eichler, Evan E. ;
Flicek, Paul ;
Gabriel, Stacey B. ;
Gibbs, Richard A. ;
Green, Eric D. ;
Hurles, Matthew E. ;
Knoppers, Bartha M. ;
Korbel, Jan O. ;
Lander, Eric S. ;
Lee, Charles ;
Lehrach, Hans ;
Mardis, Elaine R. ;
Marth, Gabor T. ;
McVean, Gil A. ;
Nickerson, Deborah A. ;
Wang, Jun ;
Wilson, Richard K. ;
Boerwinkle, Eric ;
Doddapaneni, Harsha ;
Han, Yi ;
Korchina, Viktoriya ;
Kovar, Christie ;
Lee, Sandra ;
Muzny, Donna ;
Reid, Jeffrey G. ;
Zhu, Yiming ;
Chang, Yuqi ;
Feng, Qiang ;
Fang, Xiaodong ;
Guo, Xiaosen ;
Jian, Min ;
Jiang, Hui ;
Jin, Xin ;
Lan, Tianming ;
Li, Guoqing ;
Li, Jingxiang ;
Li, Yingrui ;
Liu, Shengmao ;
Liu, Xiao ;
Lu, Yao ;
Ma, Xuedi ;
Tang, Meifang ;
Wang, Bo .
NATURE, 2015, 526 (7571) :68-+
[5]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[6]   Assessing gene-environment interaction effects of FTO, MC4R and lifestyle factors on obesity using an extreme phenotype sampling design: Results from the HUNT study [J].
Bjorniand, Thea ;
Langaas, Mette ;
Grill, Valdemar ;
Mostad, Ingrid Lovold .
PLOS ONE, 2017, 12 (04)
[7]   Genetic interactions affecting human gene expression identified by variance association mapping [J].
Brown, Andrew Anand ;
Buil, Alfonso ;
Vinuela, Ana ;
Lappalainen, Tuuli ;
Zheng, Hou-Feng ;
Richards, John B. ;
Small, Kerrin S. ;
Spector, Timothy D. ;
Dermitzakis, Emmanouil T. ;
Durbin, Richard .
ELIFE, 2014, 3
[8]  
Bycroft, 2017, BIORXIV, DOI DOI 10.1101/166298
[9]   Joint genetic analysis using variant sets reveals polygenic gene-context interactions [J].
Casale, Francesco Paolo ;
Horta, Danilo ;
Rakitsch, Barbara ;
Stegle, Oliver .
PLOS GENETICS, 2017, 13 (04)
[10]  
Casale FP, 2015, NAT METHODS, V12, P755, DOI [10.1038/NMETH.3439, 10.1038/nmeth.3439]