A new geometric trajectory tracking controller for the unicycle mobile robot

被引:5
作者
Rodriguez-Cortes, H. [1 ]
Velasco-Villa, M. [1 ]
机构
[1] Inst Politecn Nacl, Dept Ingn Elect, Secc Mecatron, Ctr Invest & Estudios Avanzados, Ave Inst Politecn Nacl 2508, Ciudad De Mexico 07360, Mexico
关键词
Non-holonomic systems; Trajectory tracking; Geometric control; Unicycle robot; Lyapunov theory; GLOBAL STABILIZATION; POINT-STABILIZATION; MECHANICAL SYSTEMS; TIME; STABILITY; DESIGN; MOTION;
D O I
10.1016/j.sysconle.2022.105360
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This work proposes a geometric controller to solve the trajectory tracking problem for a differential drive mobile robot. The proposed control design exploits the properties of the mobile robot attitude configuration space and the cascade structure of the translational and rotational kinematic models. It is formally proven, through Lyapunov arguments, that the closed-loop error dynamics is almost globally asymptotically stable. Numerical simulation results illustrate the performance of the proposed control algorithm.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:8
相关论文
共 35 条
[1]   Almost global stabilization of the inverted pendulum via continuous state feedback [J].
Angeli, D .
AUTOMATICA, 2001, 37 (07) :1103-1108
[2]  
[Anonymous], 2008, Motion Control of Wheeled Mobile Robots, DOI DOI 10.1007/978-3-540-30301-535
[3]  
[Anonymous], 1983, Differential geometric control theory
[4]   Exponential stabilization of a wheeled mobile robot via discontinuous control [J].
Astolfi, A .
JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 1999, 121 (01) :121-126
[5]   A topological obstruction to continuous global stabilization of rotational motion and the unwinding phenomenon [J].
Bhat, SP ;
Bernstein, DS .
SYSTEMS & CONTROL LETTERS, 2000, 39 (01) :63-70
[6]   Velocity-Scheduling Control for a Unicycle Mobile Robot: Theory and Experiments [J].
Buccieri, Davide ;
Perritaz, Damien ;
Mullhaupt, Philippe ;
Jiang, Zhong-Ping ;
Bonvin, Dominique .
IEEE TRANSACTIONS ON ROBOTICS, 2009, 25 (02) :451-458
[7]  
Bullo F., 1995, Proceedings of the Third European Control Conference. ECC 95, P1091
[8]  
Canudas de Wit C., 1996, THEORY ROBOT CONTROL, DOI 10.1007/978-1-4471-1501-4
[9]   Rigid-Body Attitude Control USING ROTATION MATRICES FOR CONTINUOUS, SINGULARITY-FREE CONTROL LAWS [J].
Chaturvedi, Nalin A. ;
Sanyal, Amit K. ;
McClamroch, N. Harris .
IEEE CONTROL SYSTEMS MAGAZINE, 2011, 31 (03) :30-51
[10]   Geometric Reduced-Attitude Control of Fixed-Wing UAVs [J].
Coates, Erlend M. ;
Fossen, Thor, I .
APPLIED SCIENCES-BASEL, 2021, 11 (07)