Concentration-compactness principle and γ-convergence

被引:3
作者
Bucur, D [1 ]
机构
[1] Univ Franche Comte, CNRS, Equipe Math, F-25030 Besancon, France
来源
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE | 1998年 / 327卷 / 03期
关键词
D O I
10.1016/S0764-4442(98)80142-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Being given a sequence of open (or quasi-open) sets (A(n))(n is an element of N), with A(n) subset of or equal to R-n, not necessarily bounded, but of uniformly bounded measure, we prove a concentration-compactness result in L(L-2(R-N)) for the sequence of resolvent operators (R-An)(n is an element of N), where R-An : L-2(R-N) --> H-0(1)(A(n)), R-An = (-Delta)(-1). Making the connection with the gamma-convergence theory, we prove that the behavior in L-2(R-N) of an arbitrary sequence n bar right arrow u(n) is an element of H-0(1)(A(n)) is given by (R-An (1))(n). (C) Academie des Sciences/Elsevier, Paris
引用
收藏
页码:255 / 258
页数:4
相关论文
共 9 条
[1]  
BAXTER J, 1987, T AM MATH SOC, V303, P1
[2]  
BUCUR D, 1998, UNIFORM CONCENTRATIO
[3]   AN EXISTENCE RESULT FOR A CLASS OF SHAPE OPTIMIZATION PROBLEMS [J].
BUTTAZZO, G ;
DALMASO, G .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1993, 122 (02) :183-195
[4]   WIENER CRITERION AND GAMMA-CONVERGENCE [J].
DALMASO, G ;
MOSCO, U .
APPLIED MATHEMATICS AND OPTIMIZATION, 1987, 15 (01) :15-63
[5]  
Esteban M.J., 1987, RIC MAT, VXXXVI, P73
[6]  
KAVIAN O, 1993, MATH APPL, V13
[7]   ON THE LOWEST EIGENVALUE OF THE LAPLACIAN FOR THE INTERSECTION OF 2 DOMAINS [J].
LIEB, EH .
INVENTIONES MATHEMATICAE, 1983, 74 (03) :441-448
[8]  
LIONS PL, 1984, ANN I H POINCARE-AN, V1, P109
[9]  
Willem, 1995, ANAL HARMONIQUE REEL