Classical and quantum integrability of 2D dilaton gravities in Euclidean space

被引:14
作者
Bergamin, L
Grumiller, D
Kummer, W
Vassilevich, DV
机构
[1] Vienna Univ Technol, Inst Theoret Phys, A-1040 Vienna, Austria
[2] Univ Leipzig, Inst Theoret Phys, D-04103 Leipzig, Germany
[3] St Petersburg State Univ, VA Fock Inst Phys, St Petersburg, Russia
关键词
D O I
10.1088/0264-9381/22/7/010
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Euclidean dilaton gravity in two dimensions is studied exploiting its representation as a complexified first order gravity model. All local classical solutions are obtained. A global discussion reveals that for a given model only a restricted class of topologies is consistent with the metric and the dilaton. A particular case of string motivated Liouville gravity is studied in detail. Path integral quantization in generic Euclidean dilaton gravity is performed non-perturbatively by analogy to the Minkowskian case.
引用
收藏
页码:1361 / 1381
页数:21
相关论文
共 57 条
[1]   Path integral for the Hilbert-Palatini and Ashtekar gravity [J].
Alexandrov, SY ;
Vassilevich, DV .
PHYSICAL REVIEW D, 1998, 58 (12)
[2]   Generalized Wick transform for gravity [J].
Ashtekar, A .
PHYSICAL REVIEW D, 1996, 53 (06) :R2865-R2869
[3]  
ASHTEKAR A, 1991, ADV SERIES ASTROPHYS, V6, DOI DOI 10.1142/1321
[4]   2-DIMENSIONAL QUANTUM-GRAVITY IN MINKOWSKI SPACE [J].
BANKS, T ;
OLOUGHLIN, M .
NUCLEAR PHYSICS B, 1991, 362 (03) :649-664
[5]  
Bergamin L, 2004, J HIGH ENERGY PHYS
[6]  
BLASCHKE D, 2004, UNPUB A A
[7]  
Bojowald M, 2003, J HIGH ENERGY PHYS
[8]   Noncommutative gravity in two dimensions [J].
Cacciatori, S ;
Chamseddine, AH ;
Klemm, D ;
Martucci, L ;
Sabra, WA ;
Zanon, D .
CLASSICAL AND QUANTUM GRAVITY, 2002, 19 (15) :4029-4042
[9]   EVANESCENT BLACK-HOLES [J].
CALLAN, CG ;
GIDDINGS, SB ;
HARVEY, JA ;
STROMINGER, A .
PHYSICAL REVIEW D, 1992, 45 (04) :R1005-R1009
[10]   Complexified gravity in noncommutative spaces [J].
Chamseddine, AH .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 218 (02) :283-292