Immobilization of Anions on Polymer Matrices for Gel Electrolytes with High Conductivity and Stability in Lithium Ion Batteries

被引:59
作者
Wang, Shih-Hong [1 ,2 ]
Lin, Yong-Yi [1 ,2 ]
Teng, Chiao-Yi [1 ,2 ]
Chen, Yen-Ming [1 ,2 ]
Kuo, Ping-Lin [1 ,2 ]
Lee, Yuh-Lang [1 ,2 ]
Hsieh, Chien-Te [4 ]
Teng, Hsisheng [1 ,2 ,3 ]
机构
[1] Natl Cheng Kung Univ, Dept Chem Engn, Tainan 70101, Taiwan
[2] Natl Cheng Kung Univ, Res Ctr Energy Technol & Strategy, Tainan 70101, Taiwan
[3] Natl Cheng Kung Univ, Ctr Micro Nano Sci & Technol, Tainan 70101, Taiwan
[4] Yuan Ze Univ, Dept Chem Engn & Mat Sci, Yuan Ze Fuel Cell Ctr, Taoyuan 32023, Taiwan
关键词
gel polymer electrolyte; lithium ion battery; poly(acrylonitrile); space charge regime; lithium transference number; SENSITIZED SOLAR-CELLS; CATHODE MATERIALS; COPOLYMER BLENDS; SALT-SOLUTIONS; PERFORMANCE; SEPARATORS; CARBONATE; IMPROVEMENT; TRANSPORT; EVOLUTION;
D O I
10.1021/acsami.6b01753
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
This study reports on a high ionic-conductivity gel polymer electrolyte (GPE), which is supported by a TiO2 nanopartide-decorated polymer framework comprising poly-(acrylonitrile-co-vinyl acetate) blended with poly(methyl methacrylate), i.e., PAVM:TiO2. High conductivity GPE-PAVM:TiO2 is achieved by causing the PAVM:TiO2 polymer framework to swell in 1 M LiPF6 in carbonate solvent. Raman analysis results demonstrate that the poly(acrylonitrile) (PAN) segments and TiO2 nanoparticles strongly adsorb PF6- anions, thereby generating 3D percolative space-charge pathways surrounding the polymer framework for Lit-ion transport. The ionic conductivity of GPE-PAVM:TiO2 is nearly 1 order of magnitude higher than that of commercial separator-supported liquid electrolyte (SLE). GPE-PAVM:TiO2 has a high Lit transference number (0.7), indicating that most of the PF6- anions are stationary, which suppresses PF6- decomposition and substantially enlarges the voltage that can be applied to GPE-PAVM:TiO2 (to 6.5 V vs Li/Li+). Immobilization of PF6- anions also leads to the formation of stable solid-electrolyte interface (SEI) layers in a full-cell graphitelelectrolytelLiFePO(4) battery, which exhibits low SEI and overall resistances. The graphitelelectrolyte LiFePO4 battery delivers high capacity of 84 mAh g(-1) even at 20 degrees C and presents 90% and 71% capacity retention after 100 and 1000 charge discharge cycles, respectively. This study demonstrates a GPE architecture comprising 3D space charge pathways for Lit ions and suppresses anion decomposition to improve the stability and lifespan of the resulting LIBs.
引用
收藏
页码:14776 / 14787
页数:12
相关论文
共 68 条
[1]   A novel gel electrolyte with lithium difluoro(oxalato)borate salt and Sb2O3 nanoparticles for lithium ion batteries [J].
Aravindan, V. ;
Vickraman, P. .
SOLID STATE SCIENCES, 2007, 9 (11) :1069-1073
[2]   Li+ ion conduction in TiO2 filled polyvinylidenefluoride-co-hexafluoropropylene based novel nanocomposite polymer electrolyte membranes with LiDFOB [J].
Aravindan, Vanchiappan ;
Vickraman, Palanisamy ;
Krishnaraj, Kaliappa .
CURRENT APPLIED PHYSICS, 2009, 9 (06) :1474-1479
[3]  
Armand M.B., 1987, POLYM ELECTROLYTE RE
[4]   Battery separators [J].
Arora, P ;
Zhang, ZM .
CHEMICAL REVIEWS, 2004, 104 (10) :4419-4462
[5]   Conductivity and thermal studies of blend polymer electrolytes based on PVAc-PMMA [J].
Baskaran, R. ;
Selvasekarapandian, S. ;
Kuwata, N. ;
Kawamura, J. ;
Hattori, T. .
SOLID STATE IONICS, 2006, 177 (26-32) :2679-2682
[6]   Vibrational, ac impedance and dielectric spectroscopic studies of poly(vinylacetate)-N,N-dimethylformamide-LiClO4 polymer gel electrolytes [J].
Baskaran, R ;
Selvasekarapandian, S ;
Hirankumar, G ;
Bhuvaneswari, MS .
JOURNAL OF POWER SOURCES, 2004, 134 (02) :235-240
[7]   Second phase effects on the conductivity of non-aqueous salt solutions: "Soggy sand electrolytes" [J].
Bhattacharyya, AJ ;
Maier, J .
ADVANCED MATERIALS, 2004, 16 (9-10) :811-+
[8]   Ion Transport in Liquid Salt Solutions with Oxide Dispersions: "Soggy Sand" Electrolytes [J].
Bhattacharyya, Aninda J. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2012, 3 (06) :744-750
[9]   Molecular dynamics study of nanocomposite polymer electrolyte based on poly(ethylene oxide)/LiBF4 [J].
Borodin, O ;
Smith, GD ;
Bandyopadhyaya, R ;
Redfern, P ;
Curtiss, LA .
MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2004, 12 (03) :S73-S89
[10]   Mitigation of the irreversible capacity and electrolyte decomposition in a LiNi0.5Mn1.5O4/nano-TiO2 Li-ion battery [J].
Brutti, Sergio ;
Gentili, Valentina ;
Reale, Priscilla ;
Carbone, Lorenzo ;
Panero, Stefania .
JOURNAL OF POWER SOURCES, 2011, 196 (22) :9792-9799