Robust multi-stage model-based design of optimal experiments for nonlinear estimation

被引:10
作者
Mukkula, Anwesh Reddy Gottu [1 ]
Mateas, Michal [2 ]
Fikar, Miroslav [2 ]
Paulen, Radoslav [2 ]
机构
[1] Tech Univ Dortmund, Proc Dynam & Operat Grp, Emil Figge Str 70, D-44227 Dortmund, Germany
[2] Slovak Univ Technol Bratislava, Fac Chem & Food Technol, Radlinskeho 9, Bratislava 81237, Slovakia
关键词
Optimal experiment design; Parameter estimation; Least-squares estimation; Robust optimization; PARAMETER-ESTIMATION; PREDICTIVE CONTROL; UNCERTAINTY; ALGORITHM;
D O I
10.1016/j.compchemeng.2021.107499
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We study approaches to the robust model-based design of experiments in the context of maximum-likelihood estimation. These approaches provide robustification of model-based methodologies for the design of optimal experiments by accounting for the effect of the parametric uncertainty. We study the problem of robust optimal design of experiments in the framework of nonlinear least-squares parameter estimation using linearized confidence regions. We investigate several well-known robustification frame-works in this respect and propose a novel methodology based on multi-stage robust optimization. The proposed methodology aims at problems, where the experiments are designed sequentially with a possi-bility of re-estimation in-between the experiments. The multi-stage formalism aids in identifying exper-iments that are better conducted in the early phase of experimentation, where parameter knowledge is poor. We demonstrate the findings and effectiveness of the proposed methodology using four case studies of varying complexity. (c) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:12
相关论文
共 60 条
  • [1] CasADi: a software framework for nonlinear optimization and optimal control
    Andersson, Joel A. E.
    Gillis, Joris
    Horn, Greg
    Rawlings, James B.
    Diehl, Moritz
    [J]. MATHEMATICAL PROGRAMMING COMPUTATION, 2019, 11 (01) : 1 - 36
  • [2] [Anonymous], 1977, Dynamic System Identification: Experiment Design and Data Analysis
  • [3] Designing robust optimal dynamic experiments
    Asprey, SP
    Macchietto, S
    [J]. JOURNAL OF PROCESS CONTROL, 2002, 12 (04) : 545 - 556
  • [4] DESIGN OF EXPERIMENTS FOR PARAMETER ESTIMATION
    ATKINSON, AC
    HUNTER, WG
    [J]. TECHNOMETRICS, 1968, 10 (02) : 271 - &
  • [5] Parameter estimation and optimal experimental design
    Banga, Julio R.
    Balsa-Canto, Eva
    [J]. ESSAYS IN BIOCHEMISTRY: SYSTEMS BIOLOGY, VOL 45, 2008, 45 : 195 - 209
  • [6] Handling Uncertainty in Model-Based Optimal Experimental Design
    Barz, Tilman
    Arellano-Garcia, Harvey
    Wozny, Guenter
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2010, 49 (12) : 5702 - 5713
  • [7] Bates DM., 1988, NONLINEAR REGRESSION, P365, DOI 10.1002/9780470316757
  • [8] Box G.E., 1978, STAT EXPT, V664
  • [9] Guaranteed non-asymptotic confidence regions in system identification
    Campi, MC
    Weyer, E
    [J]. AUTOMATICA, 2005, 41 (10) : 1751 - 1764
  • [10] Data-driven distributionally robust optimization using the Wasserstein metric: performance guarantees and tractable reformulations
    Esfahani, Peyman Mohajerin
    Kuhn, Daniel
    [J]. MATHEMATICAL PROGRAMMING, 2018, 171 (1-2) : 115 - 166