Vglut1 and ZnT3 co-targeting mechanisms regulate vesicular zinc stores in PC12 cells

被引:75
作者
Salazar, G
Craige, B
Love, R
Kalman, D
Faundez, V
机构
[1] Emory Univ, Dept Cell Biol, Atlanta, GA 30322 USA
[2] Emory Univ, Ctr Neurodegenerat Dis, Atlanta, GA 30322 USA
[3] Emory Univ, Dept Pathol & Lab Med, Atlanta, GA 30322 USA
关键词
zinc; Vglut1; ZnT3; synaptic vesicle; AP-3;
D O I
10.1242/jcs.02319
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The lumenal ionic content of an organelle is determined by its complement of channels and transporters. These proteins reach their resident organelles by adaptor-dependent mechanisms. This concept is illustrated in AP-3 deficiencies, in which synaptic vesicle zinc is depleted because the synaptic-vesicle-specific zinc transporter 3 does not reach synaptic vesicles. However, whether zinc transporter 3 is the only membrane protein defining synaptic-vesicle zinc content remains unknown. To address this question, we examined whether zinc transporter 3 and the vesicular glutamate transporter Vglut1 (a transporter that coexists with zinc transporter 3 in brain nerve terminals) were co-targeted to synaptic-like microvesicle fractions in PC12 cells. Deconvolution microscopy and subcellular fractionation demonstrated that these two transporters were present on the same vesicles in PC12 cells. Vglut1 content in synaptic-like microvesicle fractions and brain synaptic vesicles was partially sensitive to pharmacological and genetic perturbation of AP-3 function. Whole-cell flow-cytometry analysis of PC12 cell lines expressing zinc transporter 3, Vglut1 or both showed that vesicular zinc uptake was increased by Vglut1 expression. Conversely, production of zinc transporter 3 increased the vesicular uptake of glutamate in a zinc-dependent fashion. Our results suggest that the coupling of zinc transporter 3 and Vglut1 transport mechanisms regulates neurotransmitter content in secretory vesicles.
引用
收藏
页码:1911 / 1921
页数:11
相关论文
共 59 条
[1]   Metallothioneins in brain - The role in physiology and pathology [J].
Aschner, M ;
Cherian, MG ;
Klaassen, CD ;
Palmiter, RD ;
Erickson, JC ;
Bush, AI .
TOXICOLOGY AND APPLIED PHARMACOLOGY, 1997, 142 (02) :229-242
[2]   Atypical neural messengers [J].
Barañano, DE ;
Ferris, CD ;
Snyder, SH .
TRENDS IN NEUROSCIENCES, 2001, 24 (02) :99-106
[3]  
Bellocchio EE, 1998, J NEUROSCI, V18, P8648
[4]   Uptake of glutamate into synaptic vesicles by an inorganic phosphate transporter [J].
Bellocchio, EE ;
Reimer, RJ ;
Fremeau, RT ;
Edwards, RH .
SCIENCE, 2000, 289 (5481) :957-960
[5]   Signals for sorting of transmembrane proteins to endosomes and lysosomes [J].
Bonifacino, JS ;
Traub, LM .
ANNUAL REVIEW OF BIOCHEMISTRY, 2003, 72 :395-447
[6]   DISTRIBUTION OF GLUTAMATE-LIKE IMMUNOREACTIVITY IN EXCITATORY HIPPOCAMPAL PATHWAYS - A SEMIQUANTITATIVE ELECTRON-MICROSCOPIC STUDY IN RATS [J].
BRAMHAM, CR ;
TORP, R ;
ZHANG, N ;
STORMMATHISEN, J ;
OTTERSEN, OP .
NEUROSCIENCE, 1990, 39 (02) :405-417
[7]   Thermodynamic studies of the mechanism of metal binding to the Escherichia coli zinc transporter YiiP [J].
Chao, Y ;
Fu, D .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (17) :17173-17180
[8]   Elimination of zinc from synaptic vesicles in the intact mouse brain by disruption of the ZnT3 gene [J].
Cole, TB ;
Wenzel, HJ ;
Kafer, KE ;
Schwartzkroin, PA ;
Palmiter, RD .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (04) :1716-1721
[9]   Seizures and neuronal damage in mice lacking vesicular zinc [J].
Cole, TB ;
Robbins, CA ;
Wenzel, HJ ;
Schwartzkroin, PA ;
Palmiter, RD .
EPILEPSY RESEARCH, 2000, 39 (02) :153-169
[10]   Evidence for a zinc/proton antiporter in rat brain [J].
Colvin, RA ;
Davis, N ;
Nipper, RW ;
Carter, PA .
NEUROCHEMISTRY INTERNATIONAL, 2000, 36 (06) :539-547