A Score of the Ability of a Three-Dimensional Protein Model to Retrieve Its Own Sequence as a Quantitative Measure of Its Quality and Appropriateness

被引:13
作者
Martinez-Castilla, Leon P. [1 ,2 ]
Rodriguez-Sotres, Rogelio [1 ]
机构
[1] Univ Nacl Autonoma Mexico, Fac Quim, Dept Bioquim, Mexico City 04510, DF, Mexico
[2] Univ Nacl Autonoma Mexico, Ctr Ciencias Complejidad, Mexico City 04510, DF, Mexico
关键词
HIDDEN MARKOV-MODELS; STRUCTURE PREDICTION; TOPOFIT METHOD; DESIGN; DATABASE; RECOGNITION; ALIGNMENTS; SELECTION; ENERGY; FOLD;
D O I
10.1371/journal.pone.0012483
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: Despite the remarkable progress of bioinformatics, how the primary structure of a protein leads to a three-dimensional fold, and in turn determines its function remains an elusive question. Alignments of sequences with known function can be used to identify proteins with the same or similar function with high success. However, identification of function-related and structure-related amino acid positions is only possible after a detailed study of every protein. Folding pattern diversity seems to be much narrower than sequence diversity, and the amino acid sequences of natural proteins have evolved under a selective pressure comprising structural and functional requirements acting in parallel. Principal Findings: The approach described in this work begins by generating a large number of amino acid sequences using ROSETTA [Dantas G et al. (2003) J Mol Biol 332: 449-460], a program with notable robustness in the assignment of amino acids to a known three-dimensional structure. The resulting sequence-sets showed no conservation of amino acids at active sites, or protein-protein interfaces. Hidden Markov models built from the resulting sequence sets were used to search sequence databases. Surprisingly, the models retrieved from the database sequences belonged to proteins with the same or a very similar function. Given an appropriate cutoff, the rate of false positives was zero. According to our results, this protocol, here referred to as Rd.HMM, detects fine structural details on the folding patterns, that seem to be tightly linked to the fitness of a structural framework for a specific biological function. Conclusion: Because the sequence of the native protein used to create the Rd.HMM model was always amongst the top hits, the procedure is a reliable tool to score, very accurately, the quality and appropriateness of computer-modeled 3D-structures, without the need for spectroscopy data. However, Rd.HMM is very sensitive to the conformational features of the models' backbone.
引用
收藏
页码:1 / 19
页数:19
相关论文
共 35 条
[1]   ProtTest: selection of best-fit models of protein evolution [J].
Abascal, F ;
Zardoya, R ;
Posada, D .
BIOINFORMATICS, 2005, 21 (09) :2104-2105
[2]   A comprehensive analysis of non-sequential alignments between all protein structures [J].
Abyzov, Alexej ;
Ilyin, Valentin A. .
BMC STRUCTURAL BIOLOGY, 2007, 7
[3]   Molecular mechanisms of prion pathogenesis [J].
Aguzzi, Adriano ;
Sigurdson, Christina ;
Heikenwaelder, Mathias .
ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE, 2008, 3 :11-40
[4]   Data growth and its impact on the SCOP database: new developments [J].
Andreeva, Antonina ;
Howorth, Dave ;
Chandonia, John-Marc ;
Brenner, Steven E. ;
Hubbard, Tim J. P. ;
Chothia, Cyrus ;
Murzin, Alexey G. .
NUCLEIC ACIDS RESEARCH, 2008, 36 :D419-D425
[5]   Homology modeling using parametric alignment ensemble generation with consensus and energy-based model selection [J].
Chivian, Dylan ;
Baker, David .
NUCLEIC ACIDS RESEARCH, 2006, 34 (17)
[6]   A large scale test of computational protein design: Folding and stability of nine completely redesigned globular proteins [J].
Dantas, G ;
Kuhlman, B ;
Callender, D ;
Wong, M ;
Baker, D .
JOURNAL OF MOLECULAR BIOLOGY, 2003, 332 (02) :449-460
[7]   Profile hidden Markov models [J].
Eddy, SR .
BIOINFORMATICS, 1998, 14 (09) :755-763
[8]   NMR solution structure of a complex of calmodulin with a binding peptide of the Ca2+ pump [J].
Elshorst, B ;
Hennig, M ;
Försterling, H ;
Diener, A ;
Maurer, M ;
Schulte, P ;
Schwalbe, H ;
Griesinger, C ;
Krebs, J ;
Schmid, H ;
Vorherr, T ;
Carafoli, E .
BIOCHEMISTRY, 1999, 38 (38) :12320-12332
[9]   A novel subfamily of monomeric inorganic pyrophosphatases in photosynthetic eukaryotes [J].
Gómez-García, MR ;
Losada, M ;
Serrano, A .
BIOCHEMICAL JOURNAL, 2006, 395 (211-221) :211-221
[10]   PHYML Online - a web server for fast maximum likelihood-based phylogenetic inference [J].
Guindon, S ;
Lethiec, F ;
Duroux, P ;
Gascuel, O .
NUCLEIC ACIDS RESEARCH, 2005, 33 :W557-W559