Implicit-explicit multistep finite element-mixed finite element methods for the transient behavior of a semiconductor device

被引:4
作者
Chen, W
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100080, Peoples R China
[2] Shandong Univ, Sch Econ, Jinan 250100, Peoples R China
关键词
semiconductor device; strongly A(0)-stable; multistep methods; finite element methods; mixed finite element methods;
D O I
10.1016/S0252-9602(17)30347-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The transient behavior of a semiconductor device consists of a Poisson equation for the electric potential and of two nonlinear parabolic equations for the electron density and hole density. The electric potential equation is discretized by a mixed finite element method.. The electron and hole density equations axe treated by implicit-explicit multistep finite element methods. The schemes axe very efficient. The optimal order error estimates both in time and space are derived.
引用
收藏
页码:386 / 398
页数:13
相关论文
共 50 条
  • [31] Enhanced velocity mixed finite element methods for flow in multiblock domains
    Wheeler, JA
    Wheeler, MF
    Yotov, I
    COMPUTATIONAL GEOSCIENCES, 2002, 6 (3-4) : 315 - 332
  • [32] Mixed finite element methods for smooth domain formulation of crack problems
    Belhachmi, Z
    Sac-Epée, JM
    Sokolowski, J
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 43 (03) : 1295 - 1320
  • [33] Dual-mixed finite element methods for the stationary Boussinesq problem
    Colmenares, Eligio
    Neilan, Michael
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2016, 72 (07) : 1828 - 1850
  • [34] Energy norm a posteriori error estimates for mixed finite element methods
    Lovadina, Carlo
    Stenberg, Rolf
    MATHEMATICS OF COMPUTATION, 2006, 75 (256) : 1659 - 1674
  • [35] Enhanced Velocity Mixed Finite Element Methods for Flow in Multiblock Domains
    John A. Wheeler
    Mary F. Wheeler
    Ivan Yotov
    Computational Geosciences, 2002, 6 : 315 - 332
  • [36] Primal and Mixed Finite Element Methods for Deformable Image Registration Problems
    Barnafi, Nicolas
    Gatica, Gabriel N.
    Hurtado, Daniel E.
    SIAM JOURNAL ON IMAGING SCIENCES, 2018, 11 (04): : 2529 - 2567
  • [37] Higher order multipoint flux mixed finite element methods on quadrilaterals and hexahedra
    Ambartsumyan, Ilona
    Khattatov, Eldar
    Lee, Jeonghun J.
    Yotov, Ivan
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2019, 29 (06) : 1037 - 1077
  • [38] A PRIORI AND A POSTERIORI ANALYSIS OF MIXED FINITE ELEMENT METHODS FOR NONLINEAR ELLIPTIC EQUATIONS
    Kim, Dongho
    Park, Eun-Jae
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2010, 48 (03) : 1186 - 1207
  • [39] Two Mixed Finite Element Methods for Time-Fractional Diffusion Equations
    Yanmin Zhao
    Pan Chen
    Weiping Bu
    Xiangtao Liu
    Yifa Tang
    Journal of Scientific Computing, 2017, 70 : 407 - 428
  • [40] Compatible-strain mixed finite element methods forincompressible nonlinear elasticity
    Shojaei, Mostafa Faghih
    Yavari, Arash
    JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 361 : 247 - 279