One-Step Calcination Process for the Construction of Oxygen Deficient Fe2O3/N, P Co-doped Carbon Composites for High-Performance Supercapacitors

被引:4
作者
Dong, KaiJie [1 ]
Yang, ZhaoKun [1 ]
Shi, DongJian [1 ]
Chen, MingQing [1 ]
Dong, Weifu [1 ]
机构
[1] Jiangnan Univ, Sch Chem & Mat Engn, Minist Educ, Key Lab Synthet & Biol Colloids, Wuxi 214122, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Fe2O3; polyaniline composite; N; P co-doped carbon; in situ growth; supercapacitor; ASYMMETRIC SUPERCAPACITORS; ENERGY-CONVERSION; CLOTH; ELECTRODES; OXIDES;
D O I
10.1007/s11664-022-09758-6
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
To explore the high performance of supercapacitors, oxygen deficient Fe2O3/N, P co-doped carbon (N-Fe2O3/NPC) composites were successfully fabricated by the one-step calcination of a precursor of FeOOH/polyaniline composites via a simple strategy of introducing oxygen vacancy (denoted as oxygen defects). The influences of carbonization temperature and carbonization time on the electrochemical properties of the N-Fe2O3/NPC composites were investigated. The results show that N-Fe2O3/NPC-450-2h exhibits high capacitance (605 mF cm(-2) at a current density of 5 mA cm(-2)) and cycle life (100% after 2000 cycles). The assembled N-Fe2O3/NPC-450-2h-based symmetrical supercapacitor possesses a capacity retention rate of 100% after 5500 cycles at a current density of 10 mA cm(-2). In addition, the symmetrical supercapacitor shows a maximum energy density of 0.0148 mWh cm(-2) (0.255 mWh cm(-3)) when the power density is 0.8 mW cm(-2) (13.8 mW cm(-3)). N-Fe2O3/NPC-450-2h has broad application prospects as an electrode material for long-life symmetrical supercapacitors.
引用
收藏
页码:5262 / 5272
页数:11
相关论文
共 64 条
[1]   Engineering Hollow Carbon Architecture for High-Performance K-Ion Battery Anode [J].
Bin, De-Shan ;
Lin, Xi-Jie ;
Sun, Yong-Gang ;
Xu, Yan-Song ;
Zhang, Ke ;
Cao, An-Min ;
Wan, Li-Jun .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2018, 140 (23) :7127-7134
[2]   Redox-active metal-organic frameworks for energy conversion and storage [J].
Calbo, Joaquin ;
Golomb, Matthias J. ;
Walsh, Aron .
JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (28) :16571-16597
[3]   In situ hydrothermal growth of ferric oxides on carbon cloth for low-cost and scalable high-energy-density supercapacitors [J].
Chen, Li-Feng ;
Yu, Zi-You ;
Ma, Xiao ;
Li, Zhe-Yang ;
Yu, Shu-Hong .
NANO ENERGY, 2014, 9 :345-354
[4]   N-Doped Modified Graphene/Fe2O3 Nanocomposites as High-Performance Anode Material for Sodium Ion Storage [J].
Chen, Yaowu ;
Guo, Zhu ;
Jian, Bangquan ;
Zheng, Cheng ;
Zhang, Haiyan .
NANOMATERIALS, 2019, 9 (12)
[5]   Promising Trade-Offs Between Energy Storage and Load Bearing in Carbon Nanofibers as Structural Energy Storage Devices [J].
Chen, Yjun ;
Amiri, Ahmad ;
Boyd, James C. ;
Naraghi, Mohammad .
ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (33)
[6]   Energizing Fe2O3-based supercapacitors with tunable surface pseudocapacitance via physical spatial-confining strategy [J].
Cheng, Situo ;
Zhang, Yaxiong ;
Liu, Yupeng ;
Sun, Zhenheng ;
Cui, Peng ;
Zhang, Junli ;
Hua, Xiaohui ;
Su, Qing ;
Fu, Jiecai ;
Xie, Erqing .
CHEMICAL ENGINEERING JOURNAL, 2021, 406
[7]   Processable GO-PANI Nanocomposite for Supercapacitor Applications [J].
Ciplak, Zafer .
JOURNAL OF ELECTRONIC MATERIALS, 2022, 51 (03) :1077-1088
[8]   Core-shell structured Fe2O3@Fe3C@C nanochains and Ni-Co carbonate hydroxide hybridized microspheres for high-performance battery-type supercapacitor [J].
Dai, Shuge ;
Bai, Yucheng ;
Shen, Weixia ;
Zhang, Sen ;
Hu, Hao ;
Fu, Jianwei ;
Wang, Xinchang ;
Hu, Chenguo ;
Liu, Meilin .
JOURNAL OF POWER SOURCES, 2021, 482 (482)
[9]   A review of the microwave-assisted synthesis of carbon nanomaterials, metal oxides/hydroxides and their composites for energy storage applications [J].
Devi, Nitika ;
Sahoo, Sumanta ;
Kumar, Rajesh ;
Singh, Rajesh Kumar .
NANOSCALE, 2021, 13 (27) :11679-11711
[10]   N-Doped Hollow Carbon Spheres/Sheets Composite for Electrochemical Capacitor [J].
Du, Juan ;
Liu, Lei ;
Yu, Yifeng ;
Hu, Zepeng ;
Liu, Beibei ;
Cheng, Aibing .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (46) :40062-40069