Multiobjective second-order symmetric duality with F-convexity

被引:39
作者
Yang, XM [1 ]
Yang, XQ
Teo, KL
Hou, SH
机构
[1] Hong Kong Polytech Univ, Dept Appl Math, Kowloon, Hong Kong, Peoples R China
[2] Chongqing Normal Univ, Dept Math, Chongqing 400047, Peoples R China
基金
跨世纪优秀人才计划 国家教委《跨世纪优秀人才计划》基金; 中国国家自然科学基金;
关键词
multiobjective programming; second-order symmetric dual models; duality theorems; efficient solution; F-convexity;
D O I
10.1016/j.ejor.2004.01.028
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
We suggest a pair of second-order symmetric dual programs in multiobjective nonlinear programming. For these second-order symmetric dual programs, we prove the weak, strong and converse duality theorems under F-convexity conditions. (c) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:585 / 591
页数:7
相关论文
共 50 条
[41]   SECOND ORDER DUALITY IN MULTIOBJECTIVE PROGRAMMING [J].
Ahmad, I. ;
Husain, Z. .
JOURNAL OF APPLIED ANALYSIS, 2008, 14 (01) :131-148
[42]   Duality for Multiobjective Variational Problems under Second-Order (Φ, ρ)-Invexity [J].
Singh, Vivek ;
Ahmad, I ;
Gupta, S. K. ;
Al-Homidan, S. .
FILOMAT, 2021, 35 (02) :605-615
[43]   Duality for nondifferentiable multiobjective higher-order symmetric programs over cones involving generalized (F,α,ρ,d)-convexity [J].
SK Gupta ;
N Kailey ;
Sumit Kumar .
Journal of Inequalities and Applications, 2012
[44]   SECOND-ORDER UNIVEX FUNCTIONS AND GENERALIZED DUALITY MODELS FOR MULTIOBJECTIVE PROGRAMMING PROBLEMS CONTAINING ARBITRARY NORMS [J].
Zalmai, G. J. .
JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2013, 50 (04) :727-753
[45]   NONDIFFERENTIABLE SECOND-ORDER MINIMAX MIXED INTEGER SYMMETRIC DUALITY [J].
Gulati, Tilak Raj ;
Gupta, Shiv Kumar .
JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2011, 48 (01) :13-21
[46]   Second order Mond-Weir type duality for multiobjective programming involving Second order (C, α, ρ, d)-convexity [J].
Wang, Sichun .
JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2013, 15 (07) :1223-1230
[47]   On Second-Order Generalized Convexity [J].
Zalinescu, C. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2016, 168 (03) :802-829
[48]   Second-order duality in multiobjective programming involving (F, α, p,d)-V-type I functions [J].
Gulati, T. R. ;
Agarwal, Divya .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2007, 28 (11-12) :1263-1277
[49]   Second order duality for multiobjective programming with cone constraints [J].
Tang LiPing ;
Yan Hong ;
Yang XinMin .
SCIENCE CHINA-MATHEMATICS, 2016, 59 (07) :1285-1306
[50]   Second order symmetric duality in nondifferentiable multiobjective fractional programming with cone convex functions [J].
Jayswal A. ;
Kumar Prasad A. .
Journal of Applied Mathematics and Computing, 2014, 45 (1-2) :15-33