Multiobjective second-order symmetric duality with F-convexity

被引:39
作者
Yang, XM [1 ]
Yang, XQ
Teo, KL
Hou, SH
机构
[1] Hong Kong Polytech Univ, Dept Appl Math, Kowloon, Hong Kong, Peoples R China
[2] Chongqing Normal Univ, Dept Math, Chongqing 400047, Peoples R China
基金
跨世纪优秀人才计划 国家教委《跨世纪优秀人才计划》基金; 中国国家自然科学基金;
关键词
multiobjective programming; second-order symmetric dual models; duality theorems; efficient solution; F-convexity;
D O I
10.1016/j.ejor.2004.01.028
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
We suggest a pair of second-order symmetric dual programs in multiobjective nonlinear programming. For these second-order symmetric dual programs, we prove the weak, strong and converse duality theorems under F-convexity conditions. (c) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:585 / 591
页数:7
相关论文
共 50 条
[21]   Second Order Duality in Multiobjective Programming With Generalized Convexity [J].
Gao, Xiaoyan .
INTERNATIONAL JOURNAL OF GRID AND DISTRIBUTED COMPUTING, 2014, 7 (05) :159-170
[22]   Mixed second-order multiobjective symmetric duality with cone constraints [J].
Kailey, N. ;
Gupta, S. K. ;
Dangar, D. .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2011, 12 (06) :3373-3383
[23]   Second-order multiobjective symmetric duality involving cone-bonvex functions [J].
S. K. Gupta ;
N. Kailey .
Journal of Global Optimization, 2013, 55 :125-140
[24]   Second-order multiobjective symmetric duality involving cone-bonvex functions [J].
Gupta, S. K. ;
Kailey, N. .
JOURNAL OF GLOBAL OPTIMIZATION, 2013, 55 (01) :125-140
[25]   Higher-order (F, α, ρ, d)-convexity and symmetric duality in multiobjective programming [J].
Gupta, S. K. ;
Kailey, N. ;
Sharma, M. K. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 60 (08) :2373-2381
[26]   ON SECOND-ORDER SYMMETRIC DUALITY FOR A CLASS OF MULTIOBJECTIVE FRACTIONAL PROGRAMMING PROBLEM [J].
Ojha, Deo Brat .
TAMKANG JOURNAL OF MATHEMATICS, 2012, 43 (02) :267-279
[27]   Wolfe type second-order symmetric duality in multiobjective programming over cones [J].
Chen, Yu ;
Luo, Zhi-ming .
JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2011, 13 (07) :1335-1341
[28]   Mond-Weir type second-order symmetric duality in multiobjective programming over cones [J].
Gulati, T. R. ;
Geeta .
APPLIED MATHEMATICS LETTERS, 2010, 23 (04) :466-471
[29]   Nondifferentiable multiobjective Mond-Weir type second-order symmetric duality over cones [J].
Gulati, T. R. ;
Mehndiratta, Geeta .
OPTIMIZATION LETTERS, 2010, 4 (02) :293-309
[30]   Nondifferentiable second order symmetric duality in multiobjective programming [J].
Ahmad, I ;
Husain, Z .
APPLIED MATHEMATICS LETTERS, 2005, 18 (07) :721-728