Physical Chemistry;
Autocorrelation;
Electronic Property;
Density Surface;
Wavelet Coefficient;
D O I:
10.1023/A:1025334310107
中图分类号:
Q5 [生物化学];
Q7 [分子生物学];
学科分类号:
071010 ;
081704 ;
摘要:
Recent investigations have shown that the inclusion of hybrid shape/property descriptors together with 2D topological descriptors increases the predictive capability of QSAR and QSPR models. Property-Encoded Surface Translator (PEST) descriptors may be computed using ab initio or semi-empirical electron density surfaces and/or electronic properties, as well as atomic fragment-based TAE/RECON property-encoded surface reconstructions. The RECON and PEST algorithms also include rapid fragment-based wavelet coefficient descriptor (WCD) computation. These descriptors enable a compact encoding of chemical information. We also briefly discuss the use of the RECON/PEST methodology in a virtual high-throughput mode, as well as the use of TAE properties for molecular surface autocorrelation analysis.