New developments in PEST shape/property hybrid descriptors

被引:31
作者
Breneman, CM [1 ]
Sundling, CM
Sukumar, N
Shen, LL
Katt, WP
Embrechts, MJ
机构
[1] Rensselaer Polytech Inst, Dept Chem, Troy, NY 12180 USA
[2] Rensselaer Polytech Inst, Dept Decis Sci & Engn Syst, Troy, NY 12180 USA
关键词
Physical Chemistry; Autocorrelation; Electronic Property; Density Surface; Wavelet Coefficient;
D O I
10.1023/A:1025334310107
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Recent investigations have shown that the inclusion of hybrid shape/property descriptors together with 2D topological descriptors increases the predictive capability of QSAR and QSPR models. Property-Encoded Surface Translator (PEST) descriptors may be computed using ab initio or semi-empirical electron density surfaces and/or electronic properties, as well as atomic fragment-based TAE/RECON property-encoded surface reconstructions. The RECON and PEST algorithms also include rapid fragment-based wavelet coefficient descriptor (WCD) computation. These descriptors enable a compact encoding of chemical information. We also briefly discuss the use of the RECON/PEST methodology in a virtual high-throughput mode, as well as the use of TAE properties for molecular surface autocorrelation analysis.
引用
收藏
页码:231 / 240
页数:10
相关论文
共 14 条
  • [11] KEWLEY R, 1998, INTELLIGENT ENG SYST, P391
  • [12] LOOCKWOOD L, 2000, CHEMISTRY
  • [13] AUTOCORRELATION OF MOLECULAR-SURFACE PROPERTIES FOR MODELING CORTICOSTEROID-BINDING GLOBULIN AND CYTOSOLIC AH RECEPTOR ACTIVITY BY NEURAL NETWORKS
    WAGENER, M
    SADOWSKI, J
    GASTEIGER, J
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1995, 117 (29) : 7769 - 7775
  • [14] ZAUHAR RJ, 2000, AM CHEM SOC NAT M WA