机构:
Univ Paris 11, UMR 8628, F-91405 Orsay, FranceUniv Paris 11, UMR 8628, F-91405 Orsay, France
Dinh, TC
[1
]
Sibony, N
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris 11, UMR 8628, F-91405 Orsay, FranceUniv Paris 11, UMR 8628, F-91405 Orsay, France
Sibony, N
[1
]
机构:
[1] Univ Paris 11, UMR 8628, F-91405 Orsay, France
来源:
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES
|
2003年
/
82卷
/
04期
关键词:
D O I:
10.1016/S0021-7824(03)00026-6
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
We study the dynamics of polynomial-like mappings in several variables. A special case of our results is the following theorem: Let f : U --> V be a proper holomorphic map from an open set U subset of V onto a Stein manifold V. Assume f, is of. topological degree d(t) greater than or equal to 2. Then there is a probability measure mu supported on K:= boolean AND(n) greater than or equal to0 f(-n) (V) satisfying the following properties: (1) The measure A is invariant, K-mixing, of maximal entropy log dt. (2) If J is the Jacobian of f with respect to a volume form Omega then integral log J dmu greater than or equal to log d(t). (3) For every probability measure nu on V with no mass on pluripolar sets d(t)(-n)(f(n))*nu mu (4) If the p.s.h. functions on V are mu-integrables (mu is PLB), then (a) The Lyapounov exponents for mu are strictly positive; (b) mu is exponentially mixing; (c) There is a proper analytic subset epsilon(o) of V such that f(-1) (epsilon(0)) subset of epsilon(o) and for z is not an element of epsilon, mu(n)(z) d(t)(-n)(f(n))*delta(z) -mu where epsilon = boolean OR(ngreater than or equal to0)f(n)(epsilon(0)); (d) The measure mu is a limit of Dirac masses on the repelling periodic points. The condition mu is PLB is stable under small pertubation of f. This gives large families where it is satisfied. (C) 2003 Editions scientifiques et medicales Elsevier SAS. Tous droits reserves.
机构:
Univ Cincinnati, Dept Math Sci, Cincinnati, OH 45221 USAUniv Cincinnati, Dept Math Sci, Cincinnati, OH 45221 USA
Korman, Philip
Li, Yi
论文数: 0引用数: 0
h-index: 0
机构:
Hunan Normal Univ, Dept Math, Changsha 410081, Hunan, Peoples R China
Univ Iowa, Iowa City, IA 52242 USAUniv Cincinnati, Dept Math Sci, Cincinnati, OH 45221 USA
Li, Yi
Ouyang, Tiancheng
论文数: 0引用数: 0
h-index: 0
机构:
Brigham Young Univ, Dept Math, Provo, UT 84602 USAUniv Cincinnati, Dept Math Sci, Cincinnati, OH 45221 USA
机构:
Jiaxing Univ, Coll Math Phys & Informat Engn, Jiaxing 314001, Peoples R ChinaJiaxing Univ, Coll Math Phys & Informat Engn, Jiaxing 314001, Peoples R China
Li Lin
Zhang WenMeng
论文数: 0引用数: 0
h-index: 0
机构:
Chongqing Normal Univ, Coll Math Sci, Chongqing 400047, Peoples R ChinaJiaxing Univ, Coll Math Phys & Informat Engn, Jiaxing 314001, Peoples R China