Simulation of mesoscale interfacial properties using the lattice Boltzmann method

被引:1
作者
Zeng JianBang [1 ]
Li LongJian [1 ]
Liao Quan [1 ]
Huang YanPing [2 ]
Pan LiangMing [1 ]
机构
[1] Chongqing Univ, Minist Educ, Key Lab Low Grade Energy Utilizat Technol & Syst, Chongqing 400030, Peoples R China
[2] NPIC, Natl Key Lab Bubble Phys & Nat Circulat, Chengdu 610041, Peoples R China
来源
CHINESE SCIENCE BULLETIN | 2010年 / 55卷 / 29期
基金
中国国家自然科学基金; 高等学校博士学科点专项科研基金;
关键词
lattice Boltzmann method; mesoscopic interparticle potential; irreversible thermodynamics; free energy; MODELS;
D O I
10.1007/s11434-010-4106-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We derive the mesoscopic interparticle potentials from macroscopic thermodynamics for van der Waals, Redlich-Kwong, and Redlich-Kwong-Soave equations of state and find that all these potentials are very similar to the Lennard-Jones potential. To investigate the interfacial property at the mesoscale level, we incorporate free energy functions into the single-component multiphase lattice Boltzmann model and obtain the saturated density coexistence curves and interface mass density profiles across the interface using this method with different equations of state. The simulation results accurately reproduce the properties of equilibrium thermodynamics. Numerical results for single-component phase transitions indicate that a bubble-growth process is obtained and the equilibrium phase diagram is achieved at a given temperature. Bulk free energy, the interfacial energy coefficient, and other properties of nonequilibrium thermodynamic parameters, which are used to examine interfacial properties, are obtained in these simulations, and all these parameters are found to obey irreversible thermodynamics.
引用
收藏
页码:3267 / 3273
页数:7
相关论文
共 20 条
  • [1] A phase-field description of surface-tension-driven instability
    Borcia, R
    Merkt, D
    Bestehorn, M
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2004, 14 (12): : 4105 - 4116
  • [2] Electrostatic interactions in dissipative particle dynamics-simulation of polyelectrolytes and anionic surfactants
    Groot, RD
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2003, 118 (24) : 11265 - 11277
  • [3] Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation
    Groot, RD
    Warren, PB
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1997, 107 (11) : 4423 - 4435
  • [4] LATTICE BOLTZMANN MODEL OF IMMISCIBLE FLUIDS
    GUNSTENSEN, AK
    ROTHMAN, DH
    ZALESKI, S
    ZANETTI, G
    [J]. PHYSICAL REVIEW A, 1991, 43 (08): : 4320 - 4327
  • [5] Guo Z L, 2009, Theory and Applications of Lattice Boltzmann Method, P1
  • [6] Thermodynamic foundations of kinetic theory and Lattice Boltzmann models for multiphase flows
    He, XY
    Doolen, GD
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2002, 107 (1-2) : 309 - 328
  • [7] A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh-Taylor instability
    He, XY
    Chen, SY
    Zhang, RY
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 1999, 152 (02) : 642 - 663
  • [8] He Y L, 2009, L BOLTZMANN METHOD T, P174
  • [9] Application of the lattice Boltzmann method to electrohydrodynamics: Deformation and instability of liquid drops in electrostatic fields
    Huang WeiFeng
    Li Yong
    Liu QiuSheng
    [J]. CHINESE SCIENCE BULLETIN, 2007, 52 (24): : 3319 - 3324
  • [10] Lattice Boltzmann simulation of electrowetting
    Li, H.
    Fang, H.
    [J]. EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2009, 171 : 129 - 133