Active ingredients and molecular targets of Taraxacum mongolicum against hepatocellular carcinoma: network pharmacology, molecular docking, and molecular dynamics simulation analysis

被引:5
|
作者
Zheng, Yanfeng [1 ]
Ji, Shaoxiu [1 ]
Li, Xia [1 ]
Feng, Quansheng [1 ]
机构
[1] Chengdu Univ Tradit Chinese Med, Basic Med Coll, Chengdu, Sichuan, Peoples R China
来源
PEERJ | 2022年 / 10卷
关键词
Taraxacum Mongolicum; Hepatocellular carcinoma; Network pharmacology; Molecular docking; Molecular dynamics simulation; CANCER CELLS; PATHWAY; POLYSACCHARIDES; OFFICINALE;
D O I
10.7717/peerj.13737
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background. Taraxacum mongolicum (TM) is a widely used herb. Studies have reported that TM exhibits growth-inhibitory and apoptosis-inducing on multiple tumors, including hepatocellular carcinoma (HCC). The active ingredients, targets, and molecular mechanisms of TM against HCC need to be further elucidated. Methods. We identified the active ingredients and targets of TM via HERB, PubChem, SwissADME, SwissTargetPrediction, and PharmMapper. We searched HCC targets from GeneCards, Comparative Toxicogenomics Database (CTD), and DisGeNET. Then, the intersection of drug targets and disease targets was uploaded to the STRING database to construct protein-protein interactions (PPI) networking whose topology parameters were analyzed in Cytoscape software to screen hub targets. Next, we used Metascape for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, and we employed AutoDock vina, AMBER18 and PyMOL software along with several auxiliary tools for molecular docking and molecular dynamics (MD) simulation. Finally, based on the in silico findings, cellular experiments were conducted to investigate the effect of TM on HSP90AA1 gene expression. Results. A total of 228 targets and 35 active ingredients were identified. Twenty two hub targets were selected through PPI networking construction for further investigation. The enrichment analysis showed that protein kinase binding, mitogenactivated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathways were mainly involved. Molecular docking and MD simulation results supported good interaction between HSP90 protein and Austricin/Quercetin. The in vitro assay showed that TM inhibited the proliferation of HepG2 cells and the expression of HSP90AA1 gene. Conclusions. This study is the first to use network pharmacology, molecular docking, MD simulation and cellular experiments to elucidate the active ingredients, molecular targets, and key biological pathways responsible for TM anti-HCC, providing a theoretical basis for further research.
引用
收藏
页数:29
相关论文
共 50 条
  • [41] Exploring the Potential Mechanism of Danshen in the Treatment of Concurrent Ischemic Heart Disease and Depression Using Network Pharmacology, Molecular Docking, and Molecular Dynamics Simulation
    Liu, Zhiyao
    Huang, Hailiang
    Yu, Ying
    Jia, Yuqi
    Dang, Xiaowen
    Wang, Yajie
    Huang, Lei
    NATURAL PRODUCT COMMUNICATIONS, 2022, 17 (12)
  • [42] Revealing the Role of Beesioside O from Actaea vaginata for the Treatment of Breast Cancer Using Network Pharmacology, Molecular Docking, and Molecular Dynamics Simulation
    Li, Shuyang
    Lu, Juan
    Xue, Hongwei
    Lou, Yang
    Liu, Jia
    Wang, Yutian
    Wu, Haifeng
    Chen, Xi
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2025, 26 (05)
  • [43] Network pharmacology, molecular docking, molecular dynamics simulation, and experiment verification analysis to reveal the action mechanism of RenShen Guipi Wan in the treatment of anemia
    Qu, Tingli
    Zhang, Nan
    Li, Chen
    Liu, Xuyuan
    Yun, Keming
    An, Quan
    BIOTECHNOLOGY LETTERS, 2025, 47 (03)
  • [44] Mechanism of atorvastatin in treating hepatocellular carcinoma: a study based on network pharmacology, molecular docking, and bioinformatics analysis
    Hu, Youwen
    Xiao, Yangyang
    NAUNYN-SCHMIEDEBERGS ARCHIVES OF PHARMACOLOGY, 2024, : 5693 - 5703
  • [45] Valencene as a novel potential downregulator of THRB in NSCLC: network pharmacology, molecular docking, molecular dynamics simulation, ADMET analysis, and in vitro analysis
    Pant, Janmejay
    Singh, Lovedeep
    Mittal, Payal
    Kumar, Nitish
    MOLECULAR DIVERSITY, 2024, : 2543 - 2563
  • [46] Analysis of action of 1,4-naphthoquinone scaffold-derived compounds against acute myeloid leukemia based on network pharmacology, molecular docking and molecular dynamics simulation
    Rong Chen
    Hengfang Liu
    Weikang Meng
    Jingyu Sun
    Scientific Reports, 14 (1)
  • [47] Dissecting the molecular mechanism of cepharanthine against COVID-19 based on a network pharmacology strategy combined with RNA-sequencing analysis, molecular docking, and molecular dynamics simulation
    Liu, Jiaqin
    Sun, Taoli
    Liu, Sa
    Liu, Jian
    Fang, Senbiao
    Tan, Shengyu
    Zeng, Yucheng
    Zhang, Bikui
    Li, Wenqun
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 151
  • [48] Analysis of action of 1,4-naphthoquinone scaffold-derived compounds against acute myeloid leukemia based on network pharmacology, molecular docking and molecular dynamics simulation
    Chen, Rong
    Liu, Hengfang
    Meng, Weikang
    Sun, Jingyu
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [49] Elucidating the Molecular Targets and Mechanisms of Chlorogenic Acid Against Alzheimer's Disease via Network Pharmacology and Molecular Docking
    Liu, Xinxin
    Wang, Yabo
    LETTERS IN DRUG DESIGN & DISCOVERY, 2023, 20 (09) : 1329 - 1342
  • [50] Network pharmacology and molecular docking analysis on molecular targets and mechanisms of Gastrodia elata Blume in the treatment of ischemic stroke
    Luo, Yuan
    Chen, Pu
    Yang, Liping
    Duan, Xiaohua
    EXPERIMENTAL AND THERAPEUTIC MEDICINE, 2022, 24 (06)