Aspect-Level Sentiment Analysis of Online Product Reviews Based on Multi-features

被引:0
|
作者
Wang, Binhui [1 ]
Wang, Ruiqi [1 ]
Liu, Shujun [1 ]
Chai, Yanyu [1 ]
Xing, Shusong [1 ]
机构
[1] Nankai Univ, Coll Software, Tianjin, Peoples R China
来源
SEMANTIC TECHNOLOGY, JIST 2019 | 2020年 / 1157卷
关键词
Aspect-level sentiment analysis; Feature fusion; Implicit aspect;
D O I
10.1007/978-981-15-3412-6_16
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Aspect-level sentiment analysis aims to identify the sentiment polarity of fine-grained opinion targets. Existing methods are usually performed on structured standard datasets. We propose a model for a specific dataset which has a complex structure. First, we utilize some matching rules to extract implicit aspects, then we use the extracted aspect words to segment the corpus into samples. Finally, we propose a set of methods to construct data-based features, and try to fuse multi-features for classifier training. Experiments show that the method integrated three features has the highest F1 score, and the sentiment analysis results are more accurate.
引用
收藏
页码:161 / 169
页数:9
相关论文
共 50 条
  • [31] An Interactive Graph Attention Networks Model for Aspect-level Sentiment Analysis
    Han Hu
    Wu Yuanhang
    Qin Xiaoya
    JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2021, 43 (11) : 3282 - 3290
  • [32] Multi-granularity visual-textual jointly modeling for aspect-level multimodal sentiment analysis
    Chen, Yuzhong
    Shi, Liyuan
    Lin, Jiali
    Chen, Jingtian
    Zhong, Jiayuan
    Dong, Chen
    JOURNAL OF SUPERCOMPUTING, 2025, 81 (01):
  • [33] A novel semantic dependency and aspect interaction graph convolutional network for aspect-level sentiment analysis
    Zhu, Yihong
    Chen, Xiaoliang
    Fu, Junsen
    Du, Yajun
    2023 IEEE 22ND INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS, TRUSTCOM, BIGDATASE, CSE, EUC, ISCI 2023, 2024, : 2763 - 2769
  • [34] Ensemble correction model for aspect-level sentiment classification
    Zhou, Yiwen
    An, Lu
    Li, Gang
    Yu, Chuanming
    JOURNAL OF INFORMATION SCIENCE, 2024, 50 (02) : 481 - 497
  • [35] Deep Learning Model for Interpretability and Explainability of Aspect-Level Sentiment Analysis Based on Social Media
    Singh, Nikhil Kumar
    Agal, Sanjay
    Gadekallu, Thippa Reddy
    Shabaz, Mohammad
    Keshta, Ismail
    Jindal, Latika
    Soni, Mukesh
    Byeon, Haewon
    Singh, Pavitar Parkash
    IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2024, : 1 - 12
  • [36] Aspect-level Sentiment Analysis Based on Heterogeneous Spatial-Temporal Graph Convolutional Networks
    Jin, Mengqing
    Wang, Xun
    Xu, Changlin
    PROCEEDINGS OF 2024 3RD INTERNATIONAL CONFERENCE ON CYBER SECURITY, ARTIFICIAL INTELLIGENCE AND DIGITAL ECONOMY, CSAIDE 2024, 2024, : 370 - 374
  • [37] Aspect-Level Sentiment Analysis Using CNN Over BERT-GCN
    Phan, Huyen Trang
    Ngoc Thanh Nguyen
    Hwang, Dosam
    IEEE ACCESS, 2022, 10 : 110402 - 110409
  • [38] Syntax-Directed Hybrid Attention Network for Aspect-Level Sentiment Analysis
    Wang, Xinyi
    Xu, Guangluan
    Zhang, Jingyuan
    Sun, Xian
    Wang, Lei
    Huang, Tingle
    IEEE ACCESS, 2019, 7 : 5014 - 5025
  • [39] MOCOLNet: A Momentum Contrastive Learning Network for Multimodal Aspect-Level Sentiment Analysis
    Mu, Jie
    Nie, Feiping
    Wang, Wei
    Xu, Jian
    Zhang, Jing
    Liu, Han
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (12) : 8787 - 8800
  • [40] SSEMGAT: Syntactic and Semantic Enhanced Multi-Layer Graph Attention Network for Aspect-Level Sentiment Analysis
    Xin, Xiangzhe
    Wumaier, Aishan
    Kadeer, Zaokere
    He, Jiangtao
    APPLIED SCIENCES-BASEL, 2023, 13 (08):