Periodic and quasi-periodic trajectories of the duffing equation

被引:1
作者
Nikitina, NV [1 ]
Senchenkov, IK [1 ]
机构
[1] Natl Acad Sci Ukraine, SP Timoshenko Inst Mech, Kiev, Ukraine
关键词
D O I
10.1007/BF02700686
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
引用
收藏
页码:672 / 678
页数:7
相关论文
共 12 条
[1]  
ANUSHCHENKO VS, 1990, COMPLEX OSCILLATIONS
[2]   NUMERICAL SIMULATIONS OF PERIODIC AND CHAOTIC RESPONSES IN A STABLE DUFFING SYSTEM [J].
FANG, T ;
DOWELL, EH .
INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 1987, 22 (05) :401-425
[3]  
GUMOWSKI I, 1982, JB UBERBLICKE MATH B, P9
[4]   NON-LINEAR OSCILLATOR WITH A STRANGE ATTRACTOR [J].
HOLMES, P .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1979, 292 (1394) :419-448
[5]  
HOPPENSTADT FC, 1993, ANAL SIMULATION CHAO
[6]  
KARNAUKHOV VG, 1994, DOKL AKAD NAUK+, P65
[7]  
MARTYNYUK AA, 1997, PRIKL MEKH, V33, P82
[8]  
Moon F.C., 1992, CHAOTIC FRACTAL DYNA
[9]  
Nemytskii V. V., 1949, QUALITATIVE THEORY D
[10]   RANDOMLY TRANSITIONAL PHENOMENA IN THE SYSTEM GOVERNED BY DUFFINGS EQUATION [J].
UEDA, Y .
JOURNAL OF STATISTICAL PHYSICS, 1979, 20 (02) :181-196