CONVERGENCE RATES IN HOMOGENIZATION OF HIGHER-ORDER PARABOLIC SYSTEMS

被引:8
作者
Niu, Weisheng [1 ]
Xu, Yao [2 ]
机构
[1] Anhui Univ, Sch Math Sci, Hefei 230601, Anhui, Peoples R China
[2] Nanjing Univ, Dept Math, Nanjing 210093, Jiangsu, Peoples R China
关键词
Homogenization; higher-order parabolic systems; convergence rates; correctors; periodic coefficients; PERIODIC COEFFICIENTS; ELLIPTIC-SYSTEMS;
D O I
10.3934/dcds.2018183
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the optimal convergence rate in homogenization of higher order parabolic systems with bounded measurable, rapidly oscillating periodic coefficients. The sharp O(epsilon) convergence rate in the space L-2(0, T; Hm-1(Omega)) is obtained for both the initial-Dirichlet problem and the initial-Neumann problem. The duality argument inspired by [25] is used here.
引用
收藏
页码:4203 / 4229
页数:27
相关论文
共 50 条
[41]   Quantitative estimates in almost periodic homogenization of parabolic systems [J].
Geng, Jun ;
Shi, Bojing .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2025, 64 (01)
[42]   CONVERGENCE RATES FOR GENERAL ELLIPTIC HOMOGENIZATION PROBLEMS IN LIPSCHITZ DOMAINS [J].
Xu, Qiang .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2016, 48 (06) :3742-3788
[43]   Parabolic H-convergence and small-amplitude homogenization [J].
Antonic, Nenad ;
Vrdoljak, Marko .
APPLICABLE ANALYSIS, 2009, 88 (10-11) :1493-1508
[44]   Convergence rates on periodic homogenization of p-Laplace type equations [J].
Wang, Li ;
Xu, Qiang ;
Zhao, Peihao .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2019, 49 :418-459
[45]   Homogenization of the Dirichlet problem for elliptic and parabolic systems with periodic coefficients [J].
Yu. M. Meshkova ;
T. A. Suslina .
Functional Analysis and Its Applications, 2017, 51 :230-235
[46]   Partial regularity and singular sets of solutions of higher order parabolic systems [J].
Boegelein, Verena .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2009, 188 (01) :61-122
[47]   Partial regularity and singular sets of solutions of higher order parabolic systems [J].
Verena Bögelein .
Annali di Matematica Pura ed Applicata, 2009, 188 :61-122
[48]   Variational inequalities and higher order convergence rates for Tikhonov regularisation on Banach spaces [J].
Grasmair, Markus .
JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2013, 21 (03) :379-394
[49]   Homogenization for degenerate quasilinear parabolic equations of second order [J].
Zhang X.-Y. ;
Huang Y. .
Acta Mathematicae Applicatae Sinica, 2005, 21 (1) :93-100
[50]   Homogenization for Degenerate Quasilinear Parabolic Equations of Second Order [J].
Xingyou Zhang Yong Huang College of Mathematics and Physics Chongqing University China Institute of Fundamental Sciences Massey University Palmerston North New Zealand Department of Applied Mathematics Tsinghua University Beijing China .
Acta Mathematicae Applicatae Sinica(English Series), 2005, (01) :93-100