Oxidative cleavage of polysaccharides by monocopper enzymes depends on H2O2

被引:2
作者
Bissaro, Bastien [1 ,2 ]
Rohr, Asmund K. [2 ]
Muller, Gerdt [2 ]
Chylenski, Piotr [2 ]
Skaugen, Morten [2 ]
Forsberg, Zarah [2 ]
Horn, Svein J. [2 ]
Vaaje-Kolstad, Gustav [2 ]
Eijsink, Vincent G. H. [2 ]
机构
[1] INRA, UMR792, Ingn Syst Biol & Proc, Toulouse, France
[2] Norwegian Univ Life Sci NMBU, Fac Chem Biotechnol & Food Sci, As, Norway
关键词
CELLOBIOSE DEHYDROGENASE; FUNCTIONAL-CHARACTERIZATION; CELLULOSE DEGRADATION; HYDROGEN-PEROXIDE; MONOOXYGENASES; MECHANISMS; DISCOVERY; BIOMASS; OLIGOSACCHARIDES; LIGNOCELLULOSE;
D O I
10.1038/NCHEMBIO.2470
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Enzymes currently known as lytic polysaccharide monooxygenases (LPMOs) play an important role in the conversion of recalcitrant polysaccharides, but their mode of action has remained largely enigmatic. It is generally believed that catalysis by LPMOs requires molecular oxygen and a reductant that delivers two electrons per catalytic cycle. Using enzyme assays, mass spectrometry and experiments with labeled oxygen atoms, we show here that H2O2, rather than O-2, is the preferred co-substrate of LPMOs. By controlling H(2)O2 supply, stable reaction kinetics are achieved, the LPMOs work in the absence of O-2, and the reductant is consumed in priming rather than in stoichiometric amounts. The use of H2O2 by a monocopper enzyme that is otherwise cofactor-free offers new perspectives regarding the mode of action of copper enzymes. Furthermore, these findings have implications for the enzymatic conversion of biomass in Nature and in industrial biorefining.
引用
收藏
页码:1123 / +
页数:8
相关论文
共 53 条
[1]   Discovery of LPMO activity on hemicelluloses shows the importance of oxidative processes in plant cell wall degradation [J].
Agger, Jane W. ;
Isaksen, Trine ;
Varnai, Aniko ;
Vidal-Melgosa, Silvia ;
Willats, William G. T. ;
Ludwig, Roland ;
Horn, Svein J. ;
Eijsink, Vincent G. H. ;
Westereng, Bjorge .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (17) :6287-6292
[2]  
Arantes V., 2014, ACS SYM SER, V1158
[3]  
Barbusinski K, 2009, ECOL CHEM ENG S, V16, P347
[4]   Cellulose Degradation by Polysaccharide Monooxygenases [J].
Beeson, William T. ;
Vu, Van V. ;
Span, Elise A. ;
Phillips, Christopher M. ;
Marletta, Michael A. .
ANNUAL REVIEW OF BIOCHEMISTRY, VOL 84, 2015, 84 :923-946
[5]   Oxidative Cleavage of Cellulose by Fungal Copper-Dependent Polysaccharide Monooxygenases [J].
Beeson, William T. ;
Phillips, Christopher M. ;
Cate, Jamie H. D. ;
Marletta, Michael A. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (02) :890-892
[6]   Distribution and diversity of enzymes for polysaccharide degradation in fungi [J].
Berlemont, Renaud .
SCIENTIFIC REPORTS, 2017, 7
[7]  
Bissaro B, 2016, GREEN CHEM, V18, P5357, DOI [10.1039/C6GC01666A, 10.1039/c6gc01666a]
[8]   Oxygen dependency of one-electron reactions generating ascorbate radicals and hydrogen peroxide from ascorbic acid [J].
Boatright, William L. .
FOOD CHEMISTRY, 2016, 196 :1361-1367
[9]   Structural and Functional Characterization of a Lytic Polysaccharide Monooxygenase with Broad Substrate Specificity [J].
Borisova, Anna S. ;
Isaksen, Trine ;
Dimarogona, Maria ;
Kognole, Abhishek A. ;
Mathiesen, Geir ;
Varnai, Aniko ;
Rohr, Asmund K. ;
Payne, Christina M. ;
Sorlie, Morten ;
Sandgren, Mats ;
Eijsink, Vincent G. H. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2015, 290 (38) :22955-22969
[10]   Catalytic metals, ascorbate and free radicals: Combinations to avoid [J].
Buettner, GR ;
Jurkiewicz, BA .
RADIATION RESEARCH, 1996, 145 (05) :532-541