Quantum correlations and dynamics from classical random fields valued in complex Hilbert spaces

被引:9
作者
Khrennikov, Andrei [1 ]
机构
[1] Linnaeus Univ, Int Ctr Math Modelling Phys & Cognit Sci, S-35195 Vaxjo, Sweden
关键词
MECHANICS; MODEL;
D O I
10.1063/1.3474600
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
One of the crucial differences between mathematical models of classical and quantum mechanics (QM) is the use of the tensor product of the state spaces of subsystems as the state space of the corresponding composite system. (To describe an ensemble of classical composite systems, one uses random variables taking values in the Cartesian product of the state spaces of subsystems.) We show that, nevertheless, it is possible to establish a natural correspondence between the classical and the quantum probabilistic descriptions of composite systems. Quantum averages for composite systems (including entangled) can be represented as averages with respect to classical random fields. It is essentially what Albert Einstein dreamed of. QM is represented as classical statistical mechanics with infinite-dimensional phase space. While the mathematical construction is completely rigorous, its physical interpretation is a complicated problem. We present the basic physical interpretation of prequantum classical statistical field theory in Sec. II. However, this is only the first step toward real physical theory. (C) 2010 American Institute of Physics. [doi:10.1063/1.3474600]
引用
收藏
页数:20
相关论文
共 40 条
[1]  
[Anonymous], P SPIE
[2]  
[Anonymous], ARXIVHEPTH0105105
[3]  
[Anonymous], ARXIV08063408
[4]  
[Anonymous], 1973, QUANTUM STAT PROPERT
[5]  
[Anonymous], USPEKHI MAT NAUK
[6]  
[Anonymous], 1993, QUANTUM THEORY MOTIO, DOI DOI 10.1017/CBO9780511622687
[7]  
[Anonymous], SER C P AM I PHYS
[8]  
[Anonymous], ARXIV09061723
[9]  
[Anonymous], SER C P AM I PHYS
[10]  
[Anonymous], FDN RAD THEORY QUANT