Housekeeping Gene Sequencing and Multilocus Variable-Number Tandem-Repeat Analysis To Identify Subpopulations within Pseudomonas syringae pv. maculicola and Pseudomonas syringae pv. tomato That Correlate with Host Specificity

被引:38
|
作者
Gironde, S. [1 ]
Manceau, C. [1 ]
机构
[1] Univ Angers, INRA, UMR 1345, IRHS, Beaucouze, France
关键词
FRAGMENT-LENGTH-POLYMORPHISM; BACTERIAL SPOT DISEASE; COMPARATIVE GENOMICS; AVIRULENCE GENES; VIRULENCE; PTO; RELATEDNESS; RESISTANCE; DIVERSITY; ARABIDOPSIS;
D O I
10.1128/AEM.06655-11
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Pseudomonas syringae pv. maculicola causes bacterial spot on Brassicaceae worldwide, and for the last 10 years severe outbreaks have been reported in the Loire Valley, France. P. syringae pv. maculicola resembles P. syringae pv. tomato in that it is also pathogenic for tomato and causes the same types of symptoms. We used a collection of 106 strains of P. syringae to characterize the relationships between P. syringae pv. maculicola and related pathovars, paying special attention to P. syringae pv. tomato. Phylogenetic analysis of gyrB and rpoD gene sequences showed that P. syringae pv. maculicola, which causes diseases in Brassicaceae, forms six genetic lineages within genomospecies 3 of P. syringae strains as defined by L. Gardan et al. (Int. J. Syst. Bacteriol. 49[ Pt 2]: 469-478, 1999), whereas P. syringae pv. tomato forms two distinct genetic lineages. A multilocus variable-number tandem-repeat (VNTR) analysis (MLVA) conducted with eight minisatellite loci confirmed the genetic structure obtained with rpoD and gyrB sequence analyses. These results provide promising tools for fine-scale epidemiological studies on diseases caused by P. syringae pv. maculicola and P. syringae pv. tomato. The two pathovars had distinct host ranges; only P. syringae pv. maculicola strains were pathogenic for Brassicaceae. A subpopulation of P. syringae pv. maculicola strains that are pathogenic for Pto-expressing tomato plants were shown to lack avrPto1 and avrPtoB or to contain a disrupted avrPtoB homolog. Taking phylogenetic and pathological features into account, our data suggest that the DC3000 strain belongs to P. syringae pv. maculicola. This study shows that P. syringae pv. maculicola and P. syringae pv. tomato appear multiclonal, as they did not diverge from a single common ancestral group within the ancestral P. syringae genomospecies 3, and suggests that pathovar specificity within P. syringae may be due to independent genetic events.
引用
收藏
页码:3266 / 3279
页数:14
相关论文
共 21 条
  • [1] Origin of the Outbreak in France of Pseudomonas syringae pv. actinidiae Biovar 3, the Causal Agent of Bacterial Canker of Kiwifruit, Revealed by a Multilocus Variable-Number Tandem-Repeat Analysis
    Cunty, A.
    Cesbron, S.
    Poliakoff, F.
    Jacques, M. -A.
    Manceau, C.
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2015, 81 (19) : 6773 - 6789
  • [2] Characterization of the hrpZ gene from Pseudomonas syringae pv. maculicola M2
    Alvarez-Mejia, Cesar
    Rodriguez-Rios, Dalia
    Hernandez-Guzman, Gustavo
    Lopez-Ramirez, Varinia
    Valenzuela-Soto, Humberto
    Marsch, Rodolfo
    BRAZILIAN JOURNAL OF MICROBIOLOGY, 2015, 46 (03) : 929 - 936
  • [3] Contributions of the effector gene hopQ1-1 to differences in host range between Pseudomonas syringae pv. phaseolicola and P-syringae pv. tabaci
    Ferrante, Patrizia
    Clarke, Christopher R.
    Cavanaugh, Keri A.
    Michelmore, Richard W.
    Buonaurio, Roberto
    Vinatzer, Boris A.
    MOLECULAR PLANT PATHOLOGY, 2009, 10 (06) : 837 - 842
  • [4] Reconstructing host range evolution of bacterial plant pathogens using Pseudomonas syringae pv. tomato and its close relatives as a model
    Cai, Rongman
    Yan, Shuangchun
    Liu, Haijie
    Leman, Scotland
    Vinatzer, Boris A.
    INFECTION GENETICS AND EVOLUTION, 2011, 11 (07) : 1738 - 1751
  • [5] Genome analysis of Pseudomonas syringae pv. lachrymans strain 814/98 indicates diversity within the pathovar
    Slomnicka, Renata
    Olczak-Woltman, Helena
    Oskiera, Michal
    Schollenberger, Malgorzata
    Niemirowicz-Szczytt, Katarzyna
    Bartoszewski, Grzegorz
    EUROPEAN JOURNAL OF PLANT PATHOLOGY, 2018, 151 (03) : 663 - 676
  • [6] Identification of a Candidate Gene in Solanum habrochaites for Resistance to a Race 1 Strain of Pseudomonas syringae pv. tomato
    Bao, Zhilong
    Meng, Fanhong
    Strickler, Susan R.
    Dunham, Diane M.
    Munkvold, Kathy R.
    Martin, Gregory B.
    PLANT GENOME, 2015, 8 (03):
  • [7] Calmodulin-like proteins from Arabidopsis and tomato are involved in host defense against Pseudomonas syringae pv. tomato
    Chiasson, D
    Ekengren, SK
    Martin, GB
    Dobney, SL
    Snedden, WA
    PLANT MOLECULAR BIOLOGY, 2005, 58 (06) : 887 - 897
  • [8] Race-specific genotypes of Pseudomonas syringae pv. tomato are defined by the presence of mobile DNA elements within the genome
    Orfei, Benedetta
    Pothier, Joel F.
    Fenske, Linda
    Blom, Jochen
    Moretti, Chiaraluce
    Buonaurio, Roberto
    Smits, Theo H. M.
    FRONTIERS IN PLANT SCIENCE, 2023, 14
  • [9] GENE SEQUENCE ANALYSIS FOR THE MOLECULAR DETECTION OF PSEUDOMONAS SYRINGAE pv. ACTINIDIAE: DEVELOPING DIAGNOSTIC PROTOCOLS
    Gallelli, A.
    L'Aurora, A.
    Loreti, S.
    JOURNAL OF PLANT PATHOLOGY, 2011, 93 (02) : 425 - 435
  • [10] Genetic diversity, presence of the syrB gene, host preference and virulence of Pseudomonas syringae pv. syringae strains from woody and herbaceous host plants
    Scortichini, M
    Marchesi, U
    Dettori, MT
    Rossi, MP
    PLANT PATHOLOGY, 2003, 52 (03) : 277 - 286