Microcircuits of excitatory and inhibitory neurons in layer 2/3 of mouse barrel cortex

被引:160
作者
Avermann, Michael
Tomm, Christian [2 ,3 ]
Mateo, Celine [4 ]
Gerstner, Wulfram [2 ,3 ]
Petersen, Carl C. H. [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Lab Sensory Proc, Brain Mind Inst, Fac Life Sci,SV BMI LSENS,Stn 19, CH-1015 Lausanne, Switzerland
[2] Ecole Polytech Fed Lausanne, Sch Comp & Commun Sci, CH-1015 Lausanne, Switzerland
[3] Ecole Polytech Fed Lausanne, Sch Life Sci, Brain Mind Inst, CH-1015 Lausanne, Switzerland
[4] Univ Calif San Diego, Dept Phys, San Diego, CA 92103 USA
基金
瑞士国家科学基金会;
关键词
excitatory neurons; inhibitory neurons; neocortex; synaptic transmission; THALAMOCORTICAL FEEDFORWARD INHIBITION; PRIMARY SOMATOSENSORY CORTEX; FAST-SPIKING INTERNEURONS; RAT FRONTAL-CORTEX; VISUAL-CORTEX; CORTICAL-NEURONS; NONPYRAMIDAL CELLS; PYRAMIDAL CELLS; GABAERGIC INTERNEURONS; CEREBRAL-CORTEX;
D O I
10.1152/jn.00917.2011
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Avermann M, Tomm C, Mateo C, Gerstner W, Petersen CC. Microcircuits of excitatory and inhibitory neurons in layer 2/3 of mouse barrel cortex. J Neurophysiol 107: 3116-3134, 2012. First published March 7, 2012; doi:10.1152/jn.00917.2011.-Synaptic interactions between nearby excitatory and inhibitory neurons in the neocortex are thought to play fundamental roles in sensory processing. Here, we have combined optogenetic stimulation, whole cell recordings, and computational modeling to define key functional microcircuits within layer 2/3 of mouse primary somatosensory barrel cortex. In vitro optogenetic stimulation of excitatory layer 2/3 neurons expressing channelrhodopsin-2 evoked a rapid sequence of excitation followed by inhibition. Fast-spiking (FS) GABAergic neurons received large-amplitude, fast-rising depolarizing postsynaptic potentials, often driving action potentials. In contrast, the same optogenetic stimulus evoked small-amplitude, subthreshold postsynaptic potentials in excitatory and non-fast-spiking (NFS) GABAergic neurons. To understand the synaptic mechanisms underlying this network activity, we investigated unitary synaptic connectivity through multiple simultaneous whole cell recordings. FS GABAergic neurons received unitary excitatory postsynaptic potentials with higher probability, larger amplitudes, and faster kinetics compared with NFS GABAergic neurons and other excitatory neurons. Both FS and NFS GABAergic neurons evoked robust inhibition on postsynaptic layer 2/3 neurons. A simple computational model based on the experimentally determined electrophysiological properties of the different classes of layer 2/3 neurons and their unitary synaptic connectivity accounted for key aspects of the network activity evoked by optogenetic stimulation, including the strong recruitment of FS GABAergic neurons acting to suppress firing of excitatory neurons. We conclude that FS GABAergic neurons play an important role in neocortical microcircuit function through their strong local synaptic connectivity, which might contribute to driving sparse coding in excitatory layer 2/3 neurons of mouse barrel cortex in vivo.
引用
收藏
页码:3116 / 3134
页数:19
相关论文
共 88 条
[1]   Information processing streams in rodent barrel cortex: The differential functions of barrel and septal circuits [J].
Alloway, Kevin D. .
CEREBRAL CORTEX, 2008, 18 (05) :979-989
[2]   Layer, column and cell-type specific genetic manipulation in mouse barrel cortex [J].
Aronoff, Rachel ;
Petersen, Carl C. H. .
FRONTIERS IN NEUROSCIENCE, 2008, 2 (01) :64-71
[3]   Petilla terminology:: nomenclature of features of GABAergic interneurons of the cerebral cortex [J].
Ascoli, Giorgio A. ;
Alonso-Nanclares, Lidia ;
Anderson, Stewart A. ;
Barrionuevo, German ;
Benavides-Piccione, Ruth ;
Burkhalter, Andreas ;
Buzsaki, Gyoergy ;
Cauli, Bruno ;
DeFelipe, Javier ;
Fairen, Alfonso ;
Feldmeyer, Dirk ;
Fishell, Gord ;
Fregnac, Yves ;
Freund, Tamas F. ;
Gardner, Daniel ;
Gardner, Esther P. ;
Goldberg, Jesse H. ;
Helmstaedter, Moritz ;
Hestrin, Shaul ;
Karube, Fuyuki ;
Kisvarday, Zoltan F. ;
Lambolez, Bertrand ;
Lewis, David A. ;
Marin, Oscar ;
Markram, Henry ;
Munoz, Alberto ;
Packer, Adam ;
Petersen, Carl C. H. ;
Rockland, Kathleen S. ;
Rossier, Jean ;
Rudy, Bernardo ;
Somogyi, Peter ;
Staiger, Jochen F. ;
Tamas, Gabor ;
Thomson, Alex M. ;
Toledo-Rodriguez, Maria ;
Wang, Yun ;
West, David C. ;
Yuste, Rafael .
NATURE REVIEWS NEUROSCIENCE, 2008, 9 (07) :557-568
[4]   Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks [J].
Bartos, Marlene ;
Vida, Imre ;
Jonas, Peter .
NATURE REVIEWS NEUROSCIENCE, 2007, 8 (01) :45-56
[5]   Network anatomy and in vivo physiology of visual cortical neurons [J].
Bock, Davi D. ;
Lee, Wei-Chung Allen ;
Kerlin, Aaron M. ;
Andermann, Mark L. ;
Hood, Greg ;
Wetzel, Arthur W. ;
Yurgenson, Sergey ;
Soucy, Edward R. ;
Kim, Hyon Suk ;
Reid, R. Clay .
NATURE, 2011, 471 (7337) :177-U59
[6]   Millisecond-timescale, genetically targeted optical control of neural activity [J].
Boyden, ES ;
Zhang, F ;
Bamberg, E ;
Nagel, G ;
Deisseroth, K .
NATURE NEUROSCIENCE, 2005, 8 (09) :1263-1268
[7]   Dynamic receptive fields of reconstructed pyramidal cells in layers 3 and 2 of rat somatosensory barrel cortex [J].
Brecht, M ;
Roth, A ;
Sakmann, B .
JOURNAL OF PHYSIOLOGY-LONDON, 2003, 553 (01) :243-265
[8]   Adaptive exponential integrate-and-fire model as an effective description of neuronal activity [J].
Brette, R ;
Gerstner, W .
JOURNAL OF NEUROPHYSIOLOGY, 2005, 94 (05) :3637-3642
[9]   Intracortical circuits of pyramidal neurons reflect their long-range axonal targets [J].
Brown, Solange P. ;
Hestrin, Shaul .
NATURE, 2009, 457 (7233) :1133-U89
[10]   Interdigitated paralemniscal and lemniscal pathways in the mouse barrel cortex [J].
Bureau, Ingrid ;
von Saint Paul, Francisca ;
Svoboda, Karel .
PLOS BIOLOGY, 2006, 4 (12) :2361-2371