Nodal Solutions for a Quasilinear Elliptic Equation Involving the p-Laplacian and Critical Exponents

被引:6
作者
Deng, Yinbin [1 ]
Peng, Shuangjie [1 ]
Wang, Jixiu [2 ]
机构
[1] Huazhong Normal Univ, Sch Math & Stat, Wuhan 430079, Hubei, Peoples R China
[2] Hubei Univ Arts & Sci, Sch Math & Comp Sci, Xiangyang 441053, Peoples R China
关键词
Quasilinear elliptic equations; nodal solutions; critical exponents; CRITICAL SOBOLEV EXPONENT; SIGN-CHANGING SOLUTIONS; SCHRODINGER-EQUATIONS; SOLITON-SOLUTIONS; PERTURBATION METHOD; CRITICAL GROWTH; R-N; EXISTENCE; CHARACTER;
D O I
10.1515/ans-2017-6022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the following type of quasilinear elliptic equations in R-N involving the p-Laplacian and critical growth: -Delta(p)u + V(vertical bar x vertical bar)vertical bar u vertical bar(p-2)u - Delta(p)(vertical bar u vertical bar(2))u = lambda vertical bar u vertical bar(q-2)u + vertical bar u vertical bar(2p)*(-2)u, which arises as a model in mathematical physics, where 2 < p < N, p* = Np/N-p. For any given integer k >= 0, by using change of variables and minimization arguments, we obtain, under some additional assumptions on p and q, a radial sign- changing nodal solution with k + 1 nodal domains. Since the critical exponent appears and the lower order term ( obtained by a transformation) may change sign, we shall use delicate arguments.
引用
收藏
页码:17 / 40
页数:24
相关论文
共 32 条
[1]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[2]  
[Anonymous], 2015, Elliptic Partial Differential Equations of Second Order. Classics in Mathematics
[3]  
[Anonymous], 1986, EXPO MATH
[4]   INFINITELY MANY RADIAL SOLUTIONS OF A SEMILINEAR ELLIPTIC PROBLEM ON R(N) [J].
BARTSCH, T ;
WILLEM, M .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1993, 124 (03) :261-276
[5]   NONLINEAR ELECTROMAGNETIC-SPIN WAVES [J].
BASS, FG ;
NASONOV, NN .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1990, 189 (04) :165-223
[6]   Soliton solutions for quasilinear Schrodinger equations with critical growth [J].
Bezerra do O, Joao M. ;
Miyagaki, Olimpio H. ;
Soares, Sergio H. M. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 248 (04) :722-744
[7]   ON SYMMETRICAL SOLUTIONS OF AN ELLIPTIC EQUATION WITH A NONLINEARITY INVOLVING CRITICAL SOBOLEV EXPONENT [J].
BIANCHI, G ;
CHABROWSKI, J ;
SZULKIN, A .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1995, 25 (01) :41-59
[8]   A RELATION BETWEEN POINTWISE CONVERGENCE OF FUNCTIONS AND CONVERGENCE OF FUNCTIONALS [J].
BREZIS, H ;
LIEB, E .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 88 (03) :486-490
[9]   ON THE EXISTENCE AND NODAL CHARACTER OF SOLUTIONS OF SEMILINEAR ELLIPTIC-EQUATIONS [J].
CAO, DM ;
ZHU, XP .
ACTA MATHEMATICA SCIENTIA, 1988, 8 (03) :345-359
[10]   SOME EXISTENCE RESULTS FOR SUPERLINEAR ELLIPTIC BOUNDARY-VALUE-PROBLEMS INVOLVING CRITICAL EXPONENTS [J].
CERAMI, G ;
SOLIMINI, S ;
STRUWE, M .
JOURNAL OF FUNCTIONAL ANALYSIS, 1986, 69 (03) :289-306