On the maximum number of cycles in a Hamiltonian graph

被引:7
作者
Rautenbach, D
Stella, I
机构
[1] Forsch Inst Diskrete Math, D-53113 Bonn, Germany
[2] Rhein Westfal TH Aachen, Lehrstuhl Math 2, D-52056 Aachen, Germany
关键词
cycle; Hamiltonian graph; number of cycles;
D O I
10.1016/j.disc.2005.09.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M(k) denote the maximum number of cycles in a Hamiltonian graph of order n and size n + k. We prove that M(k) >= 2(k) + (5/2)k(2) - (21/2)k + 14 and M(k)<= 2(k+1)-1-k (root k-2/log(2) (k)+2 - 1/4log(2)(k)) for k >= 4. Furthermore, we determine M(k) and the structure of the extremal graphs for 5 <= k <= 10 exactly. Our results give partial answers to a problem raised by Shi [The number of cycles in a hamilton graph, Discrete Math. 133 (1994) 249-2571. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:101 / 107
页数:7
相关论文
共 5 条
[1]  
Diestel R., 2000, GRAD TEXT M, V173
[2]  
Entringer R.C., 1981, ARS COMBINATORIA, V11, P289
[3]   THE NUMBER OF CYCLES IN A HAMILTON GRAPH [J].
SHI, YB .
DISCRETE MATHEMATICS, 1994, 133 (1-3) :249-257
[4]  
Volkmann L., 1996, PERIOD MATH HUNG, V33, P153
[5]  
YAP HP, 1984, LECT NOTES MATH, V1073, P35