Design and Implementation of PV based Energy Harvester for WSN Node with MAIC algorithm

被引:3
作者
Rajendran, Hemalatha [1 ]
Ramabadran, Ramaprabha [1 ]
Sankararajan, Radha [1 ]
机构
[1] SSN Coll Engn, Madras 603110, Tamil Nadu, India
关键词
DC-DC power converters; energy harvesting photovoltaic cells; solar energy; wireless sensor networks; TRACKING; SYSTEM;
D O I
10.4316/AECE.2015.02014
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Wireless sensor networks (WSNs) are hardly in need of an additional source of power other than the normally used batteries, to increase the lifetime considerably. In this paper, mathematical modeling of photovoltaic energy harvesting (PVEH) system for the WSN is presented. The system comprises of the solar PV panel, boost converter as maximum power point tracker with moving averaged incremental conductance (MAIC) maximum power point (MPP) algorithm, Ni-MH battery for energy storage, compensator, buck regulator and the mathematically modeled WSN mote. MAIC algorithm is proposed to avoid the effect of drastic variations in input irradiance, in locking the MPP point. WSN mote is modeled in both active and sleep state based on the power consumption. To maintain the voltage stability, proper compensator has been designed for the proposed system. The performance of the system is tested for dynamic variations of environmental conditions using MATLAB simulation. The proposed system has 50 to 60 percent improved conversion efficiency when compared to the conventional direct coupling method. The parameters of the photovoltaic panel model have been validated through experimentation. Also the practical verification of the operation of MPPT circuit has been performed.
引用
收藏
页码:109 / 116
页数:8
相关论文
共 22 条
[1]   Maximum power point tracking using fuzzy logic control [J].
Algazar, Mohamed M. ;
AL-monier, Hamdy ;
Abd EL-Halim, Hamdy ;
Salem, Mohamed Ezzat El Kotb .
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2012, 39 (01) :21-28
[2]   An Adaptive System for Optimal Solar Energy Harvesting in Wireless Sensor Network Nodes [J].
Alippi, Cesare ;
Galperti, Cristian .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2008, 55 (06) :1742-1750
[3]   Design of a Solar-Harvesting Circuit for Batteryless Embedded Systems [J].
Brunelli, Davide ;
Moser, Clemens ;
Thiele, Lothar ;
Benini, Luca .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2009, 56 (11) :2519-2528
[4]   Modeling and Control of PV Charger System With SEPIC Converter [J].
Chiang, S. J. ;
Shieh, Hsin-Jang ;
Chen, Ming-Chieh .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2009, 56 (11) :4344-4353
[5]  
Chien-Ying Chen, 2010, Proceedings of the 16th ACM/IEEE International Symposium on Low Power Electronics and Design (ISLPED 2010), P313
[6]  
Chulsung Park, 2006, 2006 3rd Annual IEEE Communications Society Conference on Sensor and Ad Hoc Communications and Networks (IEEE Cat. No. 06EX1523), P168
[7]  
El Khateb A., 2012, 2012 IEEE IND APPL S, P1
[8]   Comparison of photovoltaic array maximum power point tracking techniques [J].
Esram, Trishan ;
Chapman, Patrick L. .
IEEE TRANSACTIONS ON ENERGY CONVERSION, 2007, 22 (02) :439-449
[9]   Optimization of perturb and observe maximum power point tracking method [J].
Femia, N ;
Petrone, G ;
Spagnuolo, G ;
Vitelli, M .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2005, 20 (04) :963-973
[10]   Indoor solar energy harvesting for sensor network router nodes [J].
Hande, Abhiman ;
Polk, Todd ;
Walker, William ;
Bhatia, Dinesh .
MICROPROCESSORS AND MICROSYSTEMS, 2007, 31 (06) :420-432