WEAK CONVERGENCE OF THE EULER SCHEME FOR STOCHASTIC DIFFERENTIAL DELAY EQUATIONS

被引:16
作者
Buckwar, Evelyn [1 ]
Kuske, Rachel [2 ]
Mohammed, Salah-Eldin [3 ]
Shardlow, Tony [4 ]
机构
[1] Heriot Watt Univ, Dept Math, Edinburgh EH14 4AS, Midlothian, Scotland
[2] Univ British Columbia, Dept Math, Vancouver, BC, Canada
[3] So Illinois Univ, Dept Math, Carbondale, IL 62901 USA
[4] Univ Manchester, Sch Math, Manchester M13 9PL, Lancs, England
来源
LMS JOURNAL OF COMPUTATION AND MATHEMATICS | 2008年 / 11卷
基金
英国工程与自然科学研究理事会; 加拿大自然科学与工程研究理事会;
关键词
D O I
10.1112/S146115700000053X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study weak convergence of an Euler scheme for non-linear stochastic delay differential equations (SDDEs) driven by multidimensional Brownian motion. The Euler scheme has weak order of convergence 1, as in the case of stochastic ordinary differential equations (SODEs) (i.e., without delay). The result holds for SDDEs with multiple finite fixed delays in the drift and diffusion terms. Although the set-up is non-anticipating, our approach uses the Malliavin calculus and the anticipating stochastic analysis techniques of Nualart and Pardoux.
引用
收藏
页码:60 / 99
页数:40
相关论文
共 39 条
[1]  
AHMED TA, 1983, THESIS U KHARTOUM SU
[2]  
[Anonymous], STUD CERC MAT
[3]  
[Anonymous], STUD CERC MAT
[4]  
Baker C. T. H., 2000, Electronic Transactions on Numerical Analysis, V11
[5]  
Baker C. T. H., 2000, LMS Journal of Computation and Mathematics, V3
[6]   Episodic synchronization in dynamically driven neurons [J].
Balenzuela, Pablo ;
Buldu, Javier M. ;
Casanova, Marcos ;
Garcia-Ojalvo, Jordi .
PHYSICAL REVIEW E, 2006, 74 (06)
[7]   The law of the Euler scheme for stochastic differential equations .1. Convergence rate of the distribution function [J].
Bally, V ;
Talay, D .
PROBABILITY THEORY AND RELATED FIELDS, 1996, 104 (01) :43-60
[8]   THE MALLIAVIN CALCULUS AND STOCHASTIC DELAY EQUATIONS [J].
BELL, DR ;
MOHAMMED, SEA .
JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 99 (01) :75-99
[9]   Weak approximation of stochastic differential delay equations [J].
Buckwar, E ;
Shardlow, T .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2005, 25 (01) :57-86
[10]   A duality approach for the weak approximation of stochastic differential equations [J].
Clement, Emmanuelle ;
Kohatsu-Higa, Arturo ;
Lamberton, Damien .
ANNALS OF APPLIED PROBABILITY, 2006, 16 (03) :1124-1154