Surface plasmon polariton amplification in a single-walled carbon nanotube

被引:19
作者
Kadochkin, A. S. [1 ,2 ,3 ]
Moiseev, S. G. [1 ,4 ]
Dadoenkova, Y. S. [1 ,5 ,6 ]
Svetukhin, V. V. [1 ,2 ]
Zolotovskii, I. O. [1 ,2 ]
机构
[1] Ulyanovsk State Univ, Ulyanovsk 432017, Russia
[2] Russian Acad Sci, Inst Nanotechnol Microelect, Moscow 119991, Russia
[3] ITMO Univ, St Petersburg 197101, Russia
[4] Russian Acad Sci, Kotelnikov Inst Radio Engn & Elect, Ulyanovsk Branch, Ulyanovsk 432011, Russia
[5] Novgorod State Univ, Veliky Novgorod 173003, Russia
[6] Donetsk Inst Phys & Technol, UA-83114 Donetsk, Ukraine
基金
俄罗斯基础研究基金会;
关键词
NANOLASER; GRAPHENE; GAIN;
D O I
10.1364/OE.25.027165
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The interaction of a surface plasmon polariton wave of the far-infrared regime propagating in a single-walled carbon nanotube with a drift current is theoretically investigated. It is shown that under the synchronism condition a surface plasmon polariton amplification mechanism is implemented due to the transfer of electromagnetic energy from a drift current wave into a terahertz surface wave propagating along the surface of a single-walled carbon nanotube. Numerical calculations show that for a typical carbon nanotube surface plasmon polariton amplification coefficient reaches huge values of the order of 10(6) cm(-1), which makes it possible to create a carbon-nanotube-based spaser. (C) 2017 Optical Society of America
引用
收藏
页码:27165 / 27171
页数:7
相关论文
共 26 条
[1]  
[Anonymous], 2003, LECT MICROWAVE ELECT
[2]   Carbon nanotube as a Cherenkov-type light emitter and free electron laser [J].
Batrakov, K. G. ;
Maksimenko, S. A. ;
Kuzhir, P. P. ;
Thomsen, C. .
PHYSICAL REVIEW B, 2009, 79 (12)
[3]   Luttinger-liquid behaviour in carbon nanotubes [J].
Bockrath, M ;
Cobden, DH ;
Lu, J ;
Rinzler, AG ;
Smalley, RE ;
Balents, L ;
McEuen, PL .
NATURE, 1999, 397 (6720) :598-601
[4]  
Chen WK, 2005, ELECTRICAL ENGINEERING HANDBOOK, pXV, DOI 10.1016/B978-012170960-0/50001-3
[5]   Surface plasmon polariton amplification in semiconductor-graphene-dielectric structure [J].
Dadoenkova, Yuliya S. ;
Moiseev, Sergey G. ;
Abramov, Aleksei S. ;
Kadochkin, Aleksei S. ;
Fotiadi, Andrei A. ;
Zolotovskii, Igor O. .
ANNALEN DER PHYSIK, 2017, 529 (05)
[6]   Amplification of long-range surface plasmons by a dipolar gain medium [J].
De Leon, Israel ;
Berini, Pierre .
NATURE PHOTONICS, 2010, 4 (06) :382-387
[7]   Toward an electrically pumped spaser [J].
Fedyanin, Dmitry Yu. .
OPTICS LETTERS, 2012, 37 (03) :404-406
[8]   Graphene Plasmonics: Challenges and Opportunities [J].
Garcia de Abajo, F. Javier .
ACS PHOTONICS, 2014, 1 (03) :135-152
[9]  
Gather MC, 2010, NAT PHOTONICS, V4, P457, DOI [10.1038/nphoton.2010.121, 10.1038/NPHOTON.2010.121]
[10]   Coulomb interactions and mesoscopic effects in carbon nanotubes [J].
Kane, C ;
Balents, L ;
Fisher, MPA .
PHYSICAL REVIEW LETTERS, 1997, 79 (25) :5086-5089