On the density of modular points in universal deformation spaces

被引:29
作者
Böckle, G [1 ]
机构
[1] Swiss Fed Inst Technol, Dept Math, CH-8092 Zurich, Switzerland
关键词
D O I
10.1353/ajm.2001.0031
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Based on comparison theorems for Hecke algebras and universal deformation rings with strong restrictions at the critical prime l, as provided by the results of Wiles, Taylor, Diamond, et al., we prove under rather general conditions that the corresponding universal deformation spaces with no restrictions at l can be identified with certain Hecke algebras of l-acid modular forms as conjectured by Gouvea, thus generalizing previous work of Gouvea and Mazur. Along the way, we show that the universal deformation spaces we consider are complete intersections, flat over Z(l) of relative dimension three, in which the modular points form a Zariski dense subset. Furthermore the fibers above Q(l) of these spaces are generically smooth.
引用
收藏
页码:985 / 1007
页数:23
相关论文
共 29 条
[1]  
Böckle G, 1999, J REINE ANGEW MATH, V509, P199
[2]   Demuskin groups with group actions and applications to deformations of Galois representations [J].
Böckle, G .
COMPOSITIO MATHEMATICA, 2000, 121 (02) :109-154
[3]  
BOSTON N, 1992, LMS AMS JOINT M CAMB
[4]  
CARAYOL H, 1986, ANN SCI ECOLE NORM S, V19, P409
[5]  
Carayol H., 1994, p-adic monodromy and the Birch and Swinnerton-Dyer conjecture (Boston, MA, 1991), V165, P213
[6]  
Coleman R., 1998, LONDON MATH SOC LECT, V254, P1
[7]   P-adic Banach spaces and families of modular forms [J].
Coleman, RF .
INVENTIONES MATHEMATICAE, 1997, 127 (03) :417-479
[8]   Modularity of certain potentially Barsotti-Tate Galois representations [J].
Conrad, B ;
Diamond, F ;
Taylor, R .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 12 (02) :521-567
[9]  
Darmon H., 1997, ELLIPTIC CURVES MODU, V2nd, P2
[10]  
DE JONG A. J., 1995, I HAUTES ETUDES SCI, V82, P5