A deep learning interpretable classifier for diabetic retinopathy disease grading

被引:104
作者
de la Torre, Jordi [1 ]
Valls, Aida [1 ]
Puig, Domenec [1 ]
机构
[1] Univ Rovira & Virgili, Escola Tecn Super Engn, Dept Engn Informat & Matemat, Avinguda Paisos Catalans 26, E-43007 Tarragona, Spain
关键词
Deep learning; Classification; Explanations; Diabetic retinopathy; Model interpretation;
D O I
10.1016/j.neucom.2018.07.102
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we present a diabetic retinopathy deep learning interpretable classifier. On one hand, it classifies retina images into different levels of severity with good performance. On the other hand, this classifier is able of explaining the classification results by assigning a score for each point in the hidden and input spaces. These scores indicate the pixel contribution to the final classification. To obtain these scores, we propose a new pixel-wise score propagation model that for every neuron, divides the observed output score into two components. With this method, the generated visual maps can be easily interpreted by an ophthalmologist in order to find the underlying statistical regularities that help to the diagnosis of this eye disease. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:465 / 476
页数:12
相关论文
共 35 条
[1]  
[Anonymous], 2014, P 2 INT C LEARN REPR
[2]  
[Anonymous], PATTERN RECOGNI LETT
[3]  
[Anonymous], 2016, ADV NEUR INF PROC SY, DOI [DOI 10.2165/00129785-200404040-00005, DOI 10.1145/3065386]
[4]  
[Anonymous], 2016, Deep Learning
[5]  
[Anonymous], 2015, Tiny ImageNet Visual Recognition Challenge., DOI DOI 10.1109/ICCV.2015.123
[6]  
[Anonymous], 2015, P ICLR
[7]  
[Anonymous], 2016, C LEARNING THEORY
[8]  
Arvin AM, 2009, LIVE VARIOLA VIRUS: CONSIDERATIONS FOR CONTINUING RESEARCH, P9
[9]   On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation [J].
Bach, Sebastian ;
Binder, Alexander ;
Montavon, Gregoire ;
Klauschen, Frederick ;
Mueller, Klaus-Robert ;
Samek, Wojciech .
PLOS ONE, 2015, 10 (07)
[10]  
Baehrens D, 2010, J MACH LEARN RES, V11, P1803