Asymptotic Behavior for a Class of Logarithmic Wave Equations with Linear Damping

被引:19
作者
Hu, Qingying [1 ]
Zhang, Hongwei [1 ]
Liu, Gongwei [1 ]
机构
[1] Henan Univ Technol, Dept Math, Zhengzhou 450001, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
Logarithmic wave equation; Initial boundary value problem; Exponential growth; Energy decay; BLOW-UP; GLOBAL EXISTENCE; DECAY; NONEXISTENCE; INSTABILITY;
D O I
10.1007/s00245-017-9423-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the initial boundary value problem for a class of logarithmic wave equations with linear damping. By constructing apotential well and using the logarithmic Sobolev inequality, we prove that, if the solution lies in the unstable set or the initial energy is negative, the solution will grow as an exponential function in the H01() norm as time goes to infinity. If the solution lies in a smaller set compared with the stable set, we can estimate the decay rate of the energy. These results are extensions of earlier results.
引用
收藏
页码:131 / 144
页数:14
相关论文
共 28 条
[1]  
[Anonymous], 1980, Annales de la faculte de sciences de Toulouse, 5e serie, DOI DOI 10.5802/AFST.543
[3]   One-dimensional Klein-Gordon equation with logarithmic nonlinearities [J].
Bartkowski, Konrad ;
Gorka, Przemyslaw .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (35)
[4]   Exponential decay of solutions of a nonlinearly damped wave equation [J].
Benaissa, A ;
Messaoudi, S .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2006, 12 (04) :391-399
[5]  
BIALYNICKIBIRULA I, 1975, B ACAD POL SCI SMAP, V23, P461
[6]   NONLINEAR-WAVE MECHANICS [J].
BIALYNICKIBIRULA, I ;
MYCIELSKI, J .
ANNALS OF PHYSICS, 1976, 100 (1-2) :62-93
[7]   Initial boundary value problem for a class of semilinear pseudo-parabolic equations with logarithmic nonlinearity [J].
Chen, Hua ;
Tian, Shuying .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 258 (12) :4424-4442
[8]   Global solution and blow-up of a semilinear heat equation with logarithmic nonlinearity [J].
Chen, Hua ;
Luo, Peng ;
Liu, Gongwei .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 422 (01) :84-98
[9]   GLOBAL EXISTENCE, UNIFORM DECAY AND EXPONENTIAL GROWTH FOR A CLASS OF SEMI-LINEAR WAVE EQUATION WITH STRONG DAMPING [J].
Chen, Hua ;
Liu, Gongwei .
ACTA MATHEMATICA SCIENTIA, 2013, 33 (01) :41-58
[10]  
D'Ancona P, 1994, DIFF INT EQU, V7, P121