Chasing protons in lithium-ion batteries

被引:6
作者
Chen, Zonghai [1 ]
机构
[1] Argonne Natl Lab, Chem Sci & Engn Div, 9700 South Cass Ave, Lemont, IL 60439 USA
关键词
COULOMBIC EFFICIENCY; CAPACITY RETENTION; ETHYLENE CARBONATE; ELECTROLYTE; STABILITY; DEGRADATION; DECOMPOSITION; DISSOLUTION; MECHANISMS; INTERFACES;
D O I
10.1039/d2cc03970b
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Parasitic reactions between delithiated cathode materials and non-aqueous electrolytes have been a major barrier that limits the upper cutoff potential of cathode materials. It is of great importance to suppress such parasitic reactions to unleash the high-energy-density potential of high voltage cathode materials. Although major effort has been made to identify the chemical composition of the cathode electrolyte interface using various cutting edge characterization tools, the chemical nature of parasitic reactions remains a puzzle. This severely hinders the rational development of stable high voltage cathode/electrolyte pairs for high-energy density lithium-ion batteries. This feature article highlights our latest effort in understanding the chemical/electrochemical role of the cathode electrolyte interface using protons as a chemical tracer for parasitic reactions.
引用
收藏
页码:10127 / 10135
页数:9
相关论文
共 50 条
  • [1] Aqueous lithium-ion batteries
    von Wald Cresce, Arthur
    Xu, Kang
    CARBON ENERGY, 2021, 3 (05) : 721 - 751
  • [2] Electrolyte Oxidation Pathways in Lithium-Ion Batteries
    Rinkel, Bernardine L. D.
    Hall, David S.
    Temprano, Israel
    Grey, Clare P.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (35) : 15058 - 15074
  • [3] Chemical View on Lithium-Ion Batteries
    Pavlovec, Lukas
    Zitka, Jan
    Pientka, Zbynek
    CHEMICKE LISTY, 2018, 112 (08): : 508 - 516
  • [4] Quantification of side reactions in lithium-ion batteries during overcharging at elevated temperatures
    Oka, Hideaki
    Nonaka, Takamasa
    Kondo, Yasuhito
    Makimura, Yoshinari
    JOURNAL OF POWER SOURCES, 2023, 580
  • [5] An Antiaging Electrolyte Additive for High-Energy-Density Lithium-Ion Batteries
    Han, Jung-Gu
    Hwang, Chihyun
    Kim, Su Hwan
    Park, Chanhyun
    Kim, Jonghak
    Jung, Gwan Yeong
    Baek, Kyungeun
    Chae, Sujong
    Kang, Seok Ju
    Cho, Jaephil
    Kwak, Sang Kyu
    Song, Hyun-Kon
    Choi, Nam-Soon
    ADVANCED ENERGY MATERIALS, 2020, 10 (20)
  • [6] Component Degradation in Lithium-Ion Batteries and Their Sustainability: A Concise Overview
    Mansir, Ibrahim B.
    Okonkwo, Paul C.
    SUSTAINABILITY, 2025, 17 (03)
  • [7] Understanding Thermal Runaway Phenomena in Overcharged Lithium-Ion Batteries
    Lee, Minseo
    You, Ji-sun
    Kang, Kyeong-sin
    Lee, Jaesung
    Bong, Sungyool
    JOURNAL OF THE KOREAN ELECTROCHEMICAL SOCIETY, 2024, 27 (02): : 55 - 72
  • [8] Failure of Lithium-Ion Batteries Accelerated by Gravity
    Hao, Yifan
    Li, Ke
    Zhang, Songtong
    Wang, Jing
    Zhu, Xiayu
    Meng, Wenjie
    Qiu, Jingyi
    Ming, Hai
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (21) : 27400 - 27409
  • [9] Precision Measurements of the Coulombic Efficiency of Lithium-Ion Batteries and of Electrode Materials for Lithium-Ion Batteries
    Smith, A. J.
    Burns, J. C.
    Trussler, S.
    Dahn, J. R.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (02) : A196 - A202
  • [10] Liquid electrolytes for lithium and lithium-ion batteries
    Swiderska-Mocek, Agnieszka
    Rudnicka, Ewelina
    PRZEMYSL CHEMICZNY, 2014, 93 (04): : 433 - 438