Multifractional processes with random exponent

被引:61
作者
Ayache, A
Taqqu, MS
机构
[1] Univ Lille 1, CNRS, UMR 8524, F-59655 Villeneuve Dascq, France
[2] CLAREE, CNRS, UMR 8020, F-59034 Lille, France
[3] Boston Univ, Dept Math & Stat, Boston, MA 02215 USA
关键词
Holder regularity; fractional Brownian motion; self-similarity; sample path properties;
D O I
10.5565/PUBLMAT_49205_11
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Multifractional Processes with Random Exponent (MPRE) are obtained by replacing the Hurst parameter of Fractional Brownian Motion (FBM) with a stochastic process. This process need not be independent of the white noise generating the FBM. MPREs can be conveniently represented as random wavelet series. We will use this type of representation to study their Holder regularity and their self-similarity.
引用
收藏
页码:459 / 486
页数:28
相关论文
共 16 条
  • [1] [Anonymous], MATH APPL
  • [2] AUSCHER P, 1992, WAVELETS THEIR APPL, P439
  • [3] Rate optimality of wavelet series approximations of fractional Brownian motion
    Ayache, A
    Taqqu, MS
    [J]. JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2003, 9 (05) : 451 - 471
  • [4] Ayache Antoine., 2000, STAT INFER STOCH PRO, V3, P7, DOI [DOI 10.1023/A:1009901714819, 10.1023/A:1009901714819]
  • [5] BARNSLEY MF, 1988, SCIENCE FRACTAL IMAG
  • [6] Benassi A, 1997, REV MAT IBEROAM, V13, P19
  • [7] Doukhan P., 2003, Theory and applications of long-range dependence
  • [8] JAFFARD S, 1989, CR ACAD SCI I-MATH, V308, P79
  • [9] Kolmogoroff AN, 1940, CR ACAD SCI URSS, V26, P115
  • [10] KRATZAS I, 1991, GRADUATE TEXTS MATH, V113