Multifidelity Uncertainty Quantification for Optical Structures

被引:0
作者
Georg, Niklas [1 ,2 ]
Lehmann, Christian [3 ]
Roemer, Ulrich [1 ]
Schuhmann, Rolf [3 ]
机构
[1] Tech Univ Carolo Wilhelmina Braunschweig, Inst Dynam & Schwingungen, Braunschweig, Germany
[2] Tech Univ Darmstadt, Ctr Computat Engn, Darmstadt, Germany
[3] Tech Univ Berlin, Theoret Elektrotech, Berlin, Germany
来源
SCIENTIFIC COMPUTING IN ELECTRICAL ENGINEERING (SCEE 2020) | 2021年 / 36卷
关键词
D O I
10.1007/978-3-030-84238-3_13
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This work addresses uncertainty quantification for optical structures. We decouple the propagation of uncertainties by combining local surrogate models with a scattering matrix approach, which is then embedded into a multifidelity Monte Carlo framework. The so obtained multifidelity method provides highly efficient estimators of statistical quantities jointly using different models of different fidelity and can handle many uncertain input parameters as well as large uncertainties. We address quasi-periodic optical structures and propose the efficient construction of low-fidelity models by polynomial surrogate modeling applied to unit cells. We recall the main notions of the multifidelity algorithm and illustrate it with a split ring resonator array simulation, serving as a benchmark for the study of optical structures. The numerical tests show speedups by orders of magnitude with respect to the standard Monte Carlo method.
引用
收藏
页码:127 / 135
页数:9
相关论文
共 10 条
[1]   Analysis of single-cell modeling of periodic metamaterial structures [J].
Bandlow, Bastian ;
Schuhmann, Rolf ;
Lubkowski, Grzegorz ;
Weiland, Thomas .
IEEE TRANSACTIONS ON MAGNETICS, 2008, 44 (06) :1662-1665
[2]   Periodic nanostructures for photonics [J].
Busch, K. ;
von Freymann, G. ;
Linden, S. ;
Mingaleev, S. F. ;
Tkeshelashvili, L. ;
Wegener, M. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2007, 444 (3-6) :101-202
[3]   ENHANCED ADAPTIVE SURROGATE MODELS WITH APPLICATIONS IN UNCERTAINTY QUANTIFICATION FOR NANOPLASMONICS [J].
Georg, Niklas ;
Loukrezis, Dimitrios ;
Roemer, Ulrich ;
Schoeps, Sebastian .
INTERNATIONAL JOURNAL FOR UNCERTAINTY QUANTIFICATION, 2020, 10 (02) :165-193
[4]   CSC-A procedure for coupled S-parameter calculations [J].
Glock, HW ;
Rothemund, K ;
van Rienen, U .
IEEE TRANSACTIONS ON MAGNETICS, 2002, 38 (02) :1173-1176
[5]   Magnetic response of metamaterials at 100 terahertz [J].
Linden, S ;
Enkrich, C ;
Wegener, M ;
Zhou, JF ;
Koschny, T ;
Soukoulis, CM .
SCIENCE, 2004, 306 (5700) :1351-1353
[6]   Computation of Electromagnetic Fields Scattered From Objects With Uncertain Shapes Using Multilevel Monte Carlo Method [J].
Litvinenko, Alexander ;
Yucel, Abdulkadir C. ;
Bagci, Hakan ;
Oppelstrup, Jesper ;
Michielssen, Eric ;
Tempone, Raul .
IEEE JOURNAL ON MULTISCALE AND MULTIPHYSICS COMPUTATIONAL TECHNIQUES, 2019, 4 :37-50
[7]   Survey of Multifidelity Methods in Uncertainty Propagation, Inference, and Optimization [J].
Peherstorfer, Benjamin ;
Willcox, Karen ;
Gunzburger, Max .
SIAM REVIEW, 2018, 60 (03) :550-591
[8]   OPTIMAL MODEL MANAGEMENT FOR MULTIFIDELITY MONTE CARLO ESTIMATION [J].
Peherstorfer, Benjamin ;
Willcox, Karen ;
Gunzburger, Max .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2016, 38 (05) :A3163-A3194
[9]  
Weiland T, 1996, INT J NUMER MODEL EL, V9, P295, DOI 10.1002/(SICI)1099-1204(199607)9:4<295::AID-JNM240>3.0.CO
[10]  
2-8