Refined Sobolev Inequalities in Lorentz Spaces

被引:8
作者
Bahouri, Hajer [2 ]
Cohen, Albert [1 ,3 ]
机构
[1] UPMC Univ Paris 06, Lab Jacques Louis Lions, UMR 7598, F-75005 Paris, France
[2] Univ Paris 11, Ctr Math, Fac Sci & Technol, F-94010 Creteil, France
[3] CNRS, Lab Jacques Louis Lions, UMR 7598, F-75005 Paris, France
关键词
Refined Sobolev inequalities; Refined Hardy inequalities; Lorentz spaces; Besov spaces;
D O I
10.1007/s00041-011-9171-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish refined Sobolev inequalities between the Lorentz spaces and homogeneous Besov spaces. The sharpness of these inequalities is illustrated on several examples, in particular based on non-uniformly oscillating functions known as chirps. These results are also used to derive refined Hardy inequalities.
引用
收藏
页码:662 / 673
页数:12
相关论文
共 18 条
[1]  
[Anonymous], INTERPOLATION OPERAT
[2]  
Bahouri H, 2006, ANN SCUOLA NORM-SCI, V5, P375
[3]  
BERGH J, 1976, INTERPOLATION SOACES
[4]  
Cohen A, 2003, REV MAT IBEROAM, V19, P235
[5]  
COHEN A, 1998, P SEM X EDP EC POL
[6]  
Cohen Albert, 2003, Numerical Analysis of wavelet Methods. J. Studies in Mathematics and Its Applications, V32
[7]  
DeVore R. A., 1993, Constructive Approximation
[8]   A DISCRETE TRANSFORM AND DECOMPOSITIONS OF DISTRIBUTION SPACES [J].
FRAZIER, M ;
JAWERTH, B .
JOURNAL OF FUNCTIONAL ANALYSIS, 1990, 93 (01) :34-170
[9]  
GERARD P, 1996, SEM X EDP EC POL PAL
[10]  
GERARD P., 1998, ESAIM Control Optim. Calc. Var., V3, P213