New double periodic and multiple soliton solutions of the generalized (2+1)-dimensional Boussinesq equation

被引:80
作者
Chen, HT
Zhang, HQ [1 ]
机构
[1] Dalian Univ Technol, Dept Appl Math, Dalian 116024, Peoples R China
[2] Linyi Teachers Univ, Dept Math, Linyi 276005, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1016/j.chaos.2003.08.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A new generalized Jacobi elliptic function method is used for constructing exact travelling wave solutions of non-linear partial differential equations in a unified way. The main idea of this method is to take full advantage of the elliptic equation which has more new solutions. More new double periodic and multiple soliton solutions are obtained for the generalized (2 + 1)-dimensional Boussinesq equation. This method can be applied to many other equations. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:765 / 769
页数:5
相关论文
共 27 条
[1]  
ABLOWITZ MJ, 1974, STU APPL MATH, V53, P315
[2]   The hyperbolic tangent distribution family [J].
Blickle, T ;
Lakatos, BG ;
Mihalyko, C ;
Ulbert, Z .
POWDER TECHNOLOGY, 1998, 97 (02) :100-108
[3]   Improved Jacobin elliptic function method and its applications [J].
Chen, HT ;
Zhang, HQ .
CHAOS SOLITONS & FRACTALS, 2003, 15 (03) :585-591
[4]   On a class of new and practical performance indexes for approximation of fold bifurcations of nonlinear power flow equations [J].
Chen, K ;
Hussein, A ;
Wan, HB .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2002, 140 (1-2) :119-141
[5]   New explicit solitary wave solutions for (2+1)-dimensional Boussinesq equation and (3+1)-dimensional KP equation [J].
Chen, Y ;
Yan, ZY ;
Zhang, H .
PHYSICS LETTERS A, 2003, 307 (2-3) :107-113
[6]   Travelling solitary wave solutions to a seventh-order generalized KdV equation [J].
Duffy, BR ;
Parkes, EJ .
PHYSICS LETTERS A, 1996, 214 (5-6) :271-272
[7]   Two new applications of the homogeneous balance method [J].
Fan, EG .
PHYSICS LETTERS A, 2000, 265 (5-6) :353-357
[8]   A note on the homogeneous balance method [J].
Fan, EG ;
Zhang, HQ .
PHYSICS LETTERS A, 1998, 246 (05) :403-406
[9]   New Jacobi elliptic function expansion and new periodic solutions of nonlinear wave equations [J].
Fu, ZT ;
Liu, SK ;
Liu, SD ;
Zhao, Q .
PHYSICS LETTERS A, 2001, 290 (1-2) :72-76
[10]   METHOD FOR SOLVING KORTEWEG-DEVRIES EQUATION [J].
GARDNER, CS ;
GREENE, JM ;
KRUSKAL, MD ;
MIURA, RM .
PHYSICAL REVIEW LETTERS, 1967, 19 (19) :1095-&