Hormonal dynamics during salt stress responses of salt-sensitive Arabidopsis thaliana and salt-tolerant Thellungiella salsuginea

被引:57
|
作者
Prerostova, Sylva [1 ,3 ]
Dobrev, Petre I. [1 ]
Gaudinova, Alena [1 ]
Hosek, Petr [1 ]
Soudek, Petr [2 ]
Knirsch, Vojtech [1 ]
Vankova, Radomira [1 ]
机构
[1] AS CR, Inst Expt Bot, Lab Hormonal Regulat Plants, Rozvojova 263, Prague 16502 6, Czech Republic
[2] AS CR, Inst Expt Bot, Lab Plant Biotechnol, Rozvojova 263, Prague 16502 6, Czech Republic
[3] Charles Univ Prague, Fac Sci, Dept Expt Plant Biol, Vinicna 5, CR-12844 Prague 2, Czech Republic
关键词
Abscisic acid; Auxin; Cytokinin; Halophyte; Phytohormone; Salt stress; ABSCISIC-ACID; LEAF SENESCENCE; REGULATORS ARR1; HALOPHILA; EXPRESSION; CYTOKININS; TRANSPORT; DROUGHT; GENES; ACCUMULATION;
D O I
10.1016/j.plantsci.2017.07.020
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Salt stress responses in salt-sensitive Arabidopsis thaliana (2-150 mM NaCl) and the closely related salt-tolerant Thellungiella salsuginea (Eutrema halophila, 150-350 mM NaCl) were compared to identify hormonal and transcriptomic changes associated with enhanced stress tolerance. Phytohormone levels, expression of selected genes, membrane stability, and Na+ and K+ concentrations were measured in shoot apices, leaves, and roots. Thellungiella exhibited higher salt stress tolerance associated with elevated basal levels of abscisic acid and jasmonic acid, and lower levels of active cytokinins (excluding cis-zeatin) in shoot apices. Analysis of the dynamics of the early salt stress response (15 min to 24 h) revealed that the halophyte response was faster and stronger. Very mild stress, in our hydropony arrangement 2-25 mM NaCl, affected the transcription of genes involved in cytokinin metabolism (AtIPTs, AtCKXs). Mild stress induced in Arabidopsis (50 mM) stress responses only in shoot apices, while in Thellungiella (150 mM) across the whole plant. Arabidopsis exhibited in hydropony evidence of severe stress above 75 mM NaCl and died in 150 mM, whereas the halophyte only became severely stressed above 225 mM. The responses of individual phytohormones (cytokinins, auxin, abscisic acid, jasmonic acid, salicylic acid and their metabolites) to salinity are discussed.
引用
收藏
页码:188 / 198
页数:11
相关论文
共 50 条
  • [41] Effect of NaCl on ammonium and nitrate uptake and transport in salt-tolerant and salt-sensitive poplars
    Liu, Jian
    Li, Jing
    Deng, Chen
    Liu, Zhe
    Yin, Kexin
    Zhang, Ying
    Zhao, Ziyan
    Zhao, Rui
    Zhao, Nan
    Zhou, Xiaoyang
    Chen, Shaoliang
    TREE PHYSIOLOGY, 2024, 44 (03)
  • [42] Responses of a salt-tolerant and a salt-sensitive line of sunflower to varying sodium/calcium ratios in saline sand culture
    Ashraf, M
    OLeary, JW
    JOURNAL OF PLANT NUTRITION, 1997, 20 (2-3) : 361 - 377
  • [43] Comparative Transcriptome and Proteome Analysis of Salt-Tolerant and Salt-Sensitive Sweet Potato and Overexpression of IbNAC7 Confers Salt Tolerance in Arabidopsis
    Meng, Xiaoqing
    Liu, Siyuan
    Dong, Tingting
    Xu, Tao
    Ma, Daifu
    Pan, Shenyuan
    Li, Zongyun
    Zhu, Mingku
    FRONTIERS IN PLANT SCIENCE, 2020, 11
  • [44] Thellungiella halophila, a salt-tolerant relative of Arabidopsis thaliana, possesses effective mechanisms to discriminate between potassium and sodium
    Volkov, V
    Wang, B
    Dominy, PJ
    Fricke, W
    Amtmann, A
    PLANT CELL AND ENVIRONMENT, 2004, 27 (01): : 1 - 14
  • [45] Investigating biochemical changes and protein profile of salt-tolerant and salt-sensitive wheat cultivars in response to salinity stress
    Divya Singh
    Ankit Singh
    Vegetos, 2024, 37 (5): : 2154 - 2161
  • [46] Salt stress modifies apoplastic barriers in olive (Olea europaea L.): a comparison between a salt-tolerant and a salt-sensitive cultivar
    Rossi, Lorenzo
    Francini, Alessandra
    Minnocci, Antonio
    Sebastiani, Luca
    SCIENTIA HORTICULTURAE, 2015, 192 : 38 - 46
  • [47] Analysis by two-dimensional electrophoresis of the effect of salt stress on the polypeptide patterns in roots of a salt-tolerant and a salt-sensitive cultivar of wheat
    Majoul, T
    Chahed, K
    Zamiti, E
    Ouelhazi, L
    Ghrir, R
    ELECTROPHORESIS, 2000, 21 (12) : 2562 - 2565
  • [48] Comparative transcriptome analysis of salt-sensitive and salt-tolerant maize reveals potential mechanisms to enhance salt resistance
    Mingquan Wang
    Yufeng Wang
    Yifei Zhang
    Chunxia Li
    Shichen Gong
    Shuqin Yan
    Guoliang Li
    Guanghui Hu
    Honglei Ren
    Jianfei Yang
    Tao Yu
    Kejun Yang
    Genes & Genomics, 2019, 41 : 781 - 801
  • [49] Comparative transcriptome analysis of salt-sensitive and salt-tolerant maize reveals potential mechanisms to enhance salt resistance
    Wang, Mingquan
    Wang, Yufeng
    Zhang, Yifei
    Li, Chunxia
    Gong, Shichen
    Yan, Shuqin
    Li, Guoliang
    Hu, Guanghui
    Ren, Honglei
    Yang, Jianfei
    Yu, Tao
    Yang, Kejun
    GENES & GENOMICS, 2019, 41 (07) : 781 - 801
  • [50] Comparative Proteomics of Salt-Tolerant and Salt-Sensitive Maize Inbred Lines to Reveal the Molecular Mechanism of Salt Tolerance
    Chen, Fenqi
    Fang, Peng
    Peng, Yunling
    Zeng, Wenjing
    Zhao, Xiaoqiang
    Ding, Yongfu
    Zhuang, Zelong
    Gao, Qiaohong
    Ren, Bin
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2019, 20 (19)