Nodal superconvergence of the local discontinuous Galerkin method for singularly perturbed problems

被引:5
作者
Zhu, Huiqing [1 ]
Celiker, Fatih [2 ]
机构
[1] Univ Southern Mississippi, Dept Math, Hattiesburg, MS 39406 USA
[2] Wayne State Univ, Dept Math, Detroit, MI 48202 USA
基金
美国国家科学基金会;
关键词
Local discontinuous Galerkin method; Singularly perturbed problems; Local error estimates; Superconvergence; CONVECTION-DIFFUSION PROBLEMS; FINITE-ELEMENT SUPERCONVERGENCE; UNIFORM SUPERCONVERGENCE; HP-VERSION; LDG METHOD; DISCRETIZATION; APPROXIMATIONS;
D O I
10.1016/j.cam.2017.07.031
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a superconvergence of order (In N/N)(2k+1) for the numerical traces of the LDG approximation to a one dimensional singularly perturbed convection diffusion reaction problem is proved. The LDG method is applied on a Shishkin mesh with 2N elements, and we use polynomials of degree at most k on each element. This result puts the numerical finding reported in Xie and Zhang (2007), Xie et al. (2009) on firm mathematical ground. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:95 / 116
页数:22
相关论文
共 27 条
[1]  
Castillo P, 2002, MATH COMPUT, V71, P455, DOI 10.1090/S0025-5718-01-01317-5
[2]   Element-by-element post-processing of discontinuous Galerkin methods for Timoshenko beams [J].
Celiker, F ;
Cockburn, B .
JOURNAL OF SCIENTIFIC COMPUTING, 2006, 27 (1-3) :177-187
[3]  
Celiker F, 2006, MATH COMPUT, V76, P67
[4]   Nodal Superconvergence of SDFEM for Singularly Perturbed Problems [J].
Celiker, Fatih ;
Zhang, Zhimin ;
Zhu, Huiqing .
JOURNAL OF SCIENTIFIC COMPUTING, 2012, 50 (02) :405-433
[5]  
Celiker F, 2011, INT J NUMER ANAL MOD, V8, P391
[6]  
Chen L, 2005, CONTEMP MATH, V383, P191
[7]   Stability and accuracy of adapted finite element methods for singularly perturbed problems [J].
Chen, Long ;
Xu, Jinchao .
NUMERISCHE MATHEMATIK, 2008, 109 (02) :167-191
[8]   GALERKIN APPROXIMATIONS FOR 2 POINT BOUNDARY PROBLEM USING CONTINUOUS, PIECEWISE POLYNOMIAL SPACES [J].
DOUGLAS, J ;
DUPONT, T .
NUMERISCHE MATHEMATIK, 1974, 22 (02) :99-109
[9]   Local analysis of discontinuous Galerkin methods applied to singularly perturbed problems [J].
Center for Applied Mathematics, Cornell University, 657 Rhodes Hall, Ithaca, NY 14853 .
J. Numer. Math., 2006, 1 (41-56) :41-56
[10]  
Hughes T.J.R., 1979, Finite Element Methods for Convection Dominated Flows, V34, P19