Artificial Intelligence in Brain Tumour Surgery-An Emerging Paradigm

被引:38
作者
Williams, Simon [1 ,2 ]
Layard Horsfall, Hugo [1 ,2 ]
Funnell, Jonathan P. [1 ,2 ]
Hanrahan, John G. [1 ,2 ]
Khan, Danyal Z. [1 ,2 ]
Muirhead, William [1 ,2 ]
Stoyanov, Danail [2 ]
Marcus, Hani J. [1 ,2 ]
机构
[1] Natl Hosp Neurol & Neurosurg, Dept Neurosurg, London WC1N 3BG, England
[2] Ctr Intervent & Surg Sci WEISS, Wellcome Engn & Phys Sci Res Council EPSRC, London W1W 7TY, England
基金
英国工程与自然科学研究理事会; 英国惠康基金;
关键词
artificial intelligence; AI; neurosurgery; brain tumour; machine learning; deep learning; surgery; oncology; CONVOLUTIONAL NEURAL-NETWORKS; QUANTITATIVE RADIOMICS APPROACH; COMPUTER-AIDED DETECTION; MACHINE LEARNING-METHODS; MR-IMAGES; AUTOMATIC SEGMENTATION; KEYHOLE NEUROSURGERY; PROTOCOL SELECTION; PRIMARY DIAGNOSIS; WORKFLOW ANALYSIS;
D O I
10.3390/cancers13195010
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Artificial intelligence (AI) is the branch of computer science that enables machines to learn, reason, and problem solve. In recent decades, AI has been developed with the aim of improving the management of patients with brain tumours. This review article explores the role AI currently plays in managing patients undergoing brain tumour surgery, and explores how AI may impact this field in the future. Artificial intelligence (AI) platforms have the potential to cause a paradigm shift in brain tumour surgery. Brain tumour surgery augmented with AI can result in safer and more effective treatment. In this review article, we explore the current and future role of AI in patients undergoing brain tumour surgery, including aiding diagnosis, optimising the surgical plan, providing support during the operation, and better predicting the prognosis. Finally, we discuss barriers to the successful clinical implementation, the ethical concerns, and we provide our perspective on how the field could be advanced.
引用
收藏
页数:25
相关论文
共 225 条
[41]   Comparison of manual and automatic segmentation methods for brain structures in the presence of space-occupying lesions: a multi-expert study [J].
Deeley, M. A. ;
Chen, A. ;
Datteri, R. ;
Noble, J. H. ;
Cmelak, A. J. ;
Donnelly, E. F. ;
Malcolm, A. W. ;
Moretti, L. ;
Jaboin, J. ;
Niermann, K. ;
Yang, Eddy S. ;
Yu, David S. ;
Yei, F. ;
Koyama, T. ;
Ding, G. X. ;
Dawant, B. M. .
PHYSICS IN MEDICINE AND BIOLOGY, 2011, 56 (14) :4557-4577
[42]   Machine Learning in Medicine [J].
Deo, Rahul C. .
CIRCULATION, 2015, 132 (20) :1920-1930
[43]   Differentiation of normal skin and melanoma using high resolution hyperspectral imaging [J].
Dicker, David T. ;
Lerner, Jeremy ;
Van Belle, Pat ;
Barth, Stephen F. ;
Guerry, DuPont ;
Herlyn, Meenhard ;
El-Deiry, Wafik S. .
CANCER BIOLOGY & THERAPY, 2006, 5 (08) :1033-1038
[44]   Automated Brain Metastases Detection Framework for T1-Weighted Contrast-Enhanced 3D MRI [J].
Dikici, Engin ;
Ryu, John L. ;
Demirer, Mutlu ;
Bigelow, Matthew ;
White, Richard D. ;
Slone, Wayne ;
Erdal, Barbaros Selnur ;
Prevedello, Luciano M. .
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2020, 24 (10) :2883-2893
[45]   Stacking denoising auto-encoders in a deep network to segment the brainstem on MRI in brain cancer patients: A clinical study [J].
Dolz, Jose ;
Betrouni, Nacim ;
Quidet, Mathilde ;
Kharroubi, Dris ;
Leroy, Henri A. ;
Reyns, Nicolas ;
Massoptier, Laurent ;
Vermandel, Maximilien .
COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2016, 52 :8-18
[46]   A Generic Support Vector Machine Model for Preoperative Glioma Survival Associations [J].
Emblem, Kyrre E. ;
Pinho, Marco C. ;
Zollner, Frank G. ;
Due-Tonnessen, Paulina ;
Hald, John K. ;
Schad, Lothar R. ;
Meling, Torstein R. ;
Rapalino, Otto ;
Bjornerud, Atle .
RADIOLOGY, 2015, 275 (01) :228-234
[47]   Neuronavigation: geneology, reality, and prospects [J].
Enchev, Yavor .
NEUROSURGICAL FOCUS, 2009, 27 (03) :E11.1-E11.18
[48]  
Ertosun Mehmet Gunhan, 2015, AMIA Annu Symp Proc, V2015, P1899
[49]   Deep Learning-Based Framework for In Vivo Identification of Glioblastoma Tumor using Hyperspectral Images of Human Brain [J].
Fabelo, Himar ;
Halicek, Martin ;
Ortega, Samuel ;
Shahedi, Maysam ;
Szolna, Adam ;
Pineiro, Juan F. ;
Sosa, Coralia ;
O'Shanahan, Aruma J. ;
Bisshopp, Sara ;
Espino, Carlos ;
Marquez, Mariano ;
Hernandez, Maria ;
Carrera, David ;
Morera, Jesus ;
Callico, Gustavo M. ;
Sarmiento, Roberto ;
Fei, Baowei .
SENSORS, 2019, 19 (04)
[50]   Spatio-spectral classification of hyperspectral images for brain cancer detection during surgical operations [J].
Fabelo, Himar ;
Ortega, Samuel ;
Ravi, Daniele ;
Kiran, B. Ravi ;
Sosa, Coralia ;
Bulters, Diederik ;
Callico, Gustavo M. ;
Bulstrode, Harry ;
Szolna, Adam ;
Pineiro, Juan F. ;
Kabwama, Silvester ;
Madronal, Daniel ;
Lazcano, Raquel ;
J-O'Shanahan, Aruma ;
Bisshopp, Sara ;
Hernandez, Maria ;
Baez, Abelardo ;
Yang, Guang-Zhong ;
Stanciulescu, Bogdan ;
Salvador, Ruben ;
Juarez, Eduardo ;
Sarmiento, Roberto .
PLOS ONE, 2018, 13 (03)