A COMPLETE QUANTITATIVE DEDUCTION SYSTEM FOR THE BISIMILARITY DISTANCE ON MARKOV CHAINS

被引:7
作者
Bacci, Giorgio [1 ]
Bacci, Giovanni [1 ]
Larsen, Kim G. [1 ]
Mardare, Radu [1 ]
机构
[1] Aalborg Univ, Dept Comp Sci, Aalborg, Denmark
基金
新加坡国家研究基金会; 欧盟第七框架计划; 美国国家科学基金会;
关键词
Markov chains; Behavioral distances; Axiomatization; AXIOMATIZATIONS; METRICS;
D O I
10.23638/LMCS-14(4:15)2018
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper we propose a complete axiomatization of the bisimilarity distance of Desharnais et al. for the class of finite labelled Markov chains. Our axiomatization is given in the style of a quantitative extension of equational logic recently proposed by Mardare, Panangaden, and Plotkin (LICS 2016) that uses equality relations t equivalent to(epsilon) s indexed by rationals, expressing that "t is approximately equal to s up to an error epsilon". Notably, our quantitative deduction system extends in a natural way the equational system for probabilistic bisimilarity given by Stark and Smolka by introducing an axiom for dealing with the Kantorovich distance between probability distributions. The axiomatization is then used to propose a metric extension of a Kleene's style representation theorem for finite labelled Markov chains, that was proposed (in a more general coalgebraic fashion) by Silva et al. (Inf. Comput. 2011).
引用
收藏
页数:29
相关论文
共 45 条
[11]  
Bandini E, 2001, LECT NOTES COMPUT SC, V2076, P370
[12]  
Bloom S. L., 1994, Mathematical Foundations of Computer Science 1994. 19th International Symposium, MFCS'94. Proceedings, P52
[13]  
Bloom S.L., 1993, EATCS MONOGRAPHS THE, DOI DOI 10.1007/978-3-642-78034-9
[14]   Sound and Complete Axiomatizations of Coalgebraic Language Equivalence [J].
Bonsangue, Marcello M. ;
Milius, Stefan ;
Silva, Alexandra .
ACM TRANSACTIONS ON COMPUTATIONAL LOGIC, 2013, 14 (01)
[15]  
Chen D, 2012, LECT NOTES COMPUT SC, V7213, P437, DOI 10.1007/978-3-642-28729-9_29
[16]  
Courcelle B., 1974, ALGORITHMES EQUIVALE, P200
[17]  
D'Argenio Pedro R., 2014, LECT NOTES COMPUTER, P289
[18]   Axiomatizations for probabilistic finite-state behaviors [J].
Deng, Yuxin ;
Palamidessi, Catuscia .
THEORETICAL COMPUTER SCIENCE, 2007, 373 (1-2) :92-114
[19]   Metrics for labelled Markov processes [J].
Desharnais, J ;
Gupta, V ;
Jagadeesan, R ;
Panangaden, P .
THEORETICAL COMPUTER SCIENCE, 2004, 318 (03) :323-354
[20]   The logic of recursive equations [J].
Hurkens, AJC ;
McArthur, M ;
Moschovakis, YN ;
Moss, LS ;
Whitney, GT .
JOURNAL OF SYMBOLIC LOGIC, 1998, 63 (02) :451-478