High efficiency all-polymer solar cells realized by the synergistic effect between the polymer side-chain structure and solvent additive

被引:79
|
作者
Yuan, Jianyu [1 ]
Ma, Wanli [1 ]
机构
[1] Soochow Univ, Collaborat Innovat Ctr Suzhou Nano Sci & Technol, Jiangsu Key Lab Carbon Based Funct Mat & Devices, Inst Funct Nano & Soft Mat FUNSOM, Suzhou, Peoples R China
基金
中国国家自然科学基金; 国家教育部博士点专项基金资助; 国家高技术研究发展计划(863计划);
关键词
FIELD-EFFECT TRANSISTORS; PERFORMANCE; DESIGN; AGGREGATION; MORPHOLOGY; PAIR;
D O I
10.1039/c4ta06648k
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
By adopting a series of donor-acceptor (D-A) polymers containing Benzo[1,2-b: 4,5-b'] dithiophene (BDT) and thieno[3,4-c] pyrrole-4,6-dione (TPD) with different numbers of alkyl aromatic side-chains, we demonstrate a high optimized PCE of 4.35% for all-polymer solar cells by incorporating an n-type polymer N2200. Through systematic characterization of tapping mode atomic force microscopy (AFM), 2-dimensional grazing-incidence X-ray diffraction (2d-GIXD), photoluminescence spectra and peak force-kelvin probe force microscopy (PF-KPFM), we have shown that the introduction of alkyl aromatic side chains to the donor polymer backbone is beneficial for the intermolecular pi-pi stacking and hence improves the polymer crystallinity as well as hole mobility. More importantly, we discovered that conjugated side-chains and additives can work synergistically to restore the intermolecular stacking of donor-acceptor polymers in the as-cast amorphous blend film and meanwhile develop fine phase segregation for efficient exciton dissociation and transport. As a result, the donor polymer PTP8 with fully alkyl aromatic side chains demonstrated an improved short-circuit current density (J(sc)), a high open-circuit voltage (V-oc) of similar to 1.00 V and a power conversion efficiency (PCE) of 4.35% after the addition of 0.5% DIO, which is among the highest reported efficiencies for all polymer solar cells.
引用
收藏
页码:7077 / 7085
页数:9
相关论文
共 50 条
  • [21] Side-chain modification of polyethylene glycol on conjugated polymers for ternary blend all-polymer solar cells with efficiency up to 9.27%
    Zhenye Li
    Baobing Fan
    Baitian He
    Lei Ying
    Wenkai Zhong
    Feng Liu
    Fei Huang
    Yong Cao
    Science China(Chemistry), 2018, (04) : 427 - 436
  • [22] Side-chain modification of polyethylene glycol on conjugated polymers for ternary blend all-polymer solar cells with efficiency up to 9.27%
    Li, Zhenye
    Fan, Baobing
    He, Baitian
    Ying, Lei
    Zhong, Wenkai
    Liu, Feng
    Huang, Fei
    Cao, Yong
    SCIENCE CHINA-CHEMISTRY, 2018, 61 (04) : 427 - 436
  • [23] 15.4% Efficiency all-polymer solar cells
    Long Zhang
    Tao Jia
    Langheng Pan
    Baoqi Wu
    Zaiyu Wang
    Ke Gao
    Feng Liu
    Chunhui Duan
    Fei Huang
    Yong Cao
    Science China(Chemistry), 2021, (03) : 408 - 412
  • [24] 15.4% Efficiency all-polymer solar cells
    Zhang, Long
    Jia, Tao
    Pan, Langheng
    Wu, Baoqi
    Wang, Zaiyu
    Gao, Ke
    Liu, Feng
    Duan, Chunhui
    Huang, Fei
    Cao, Yong
    SCIENCE CHINA-CHEMISTRY, 2021, 64 (03) : 408 - 412
  • [25] 15.4% Efficiency all-polymer solar cells
    Long Zhang
    Tao Jia
    Langheng Pan
    Baoqi Wu
    Zaiyu Wang
    Ke Gao
    Feng Liu
    Chunhui Duan
    Fei Huang
    Yong Cao
    Science China Chemistry, 2021, 64 : 408 - 412
  • [26] 15.4% Efficiency all-polymer solar cells
    Long Zhang
    Tao Jia
    Langheng Pan
    Baoqi Wu
    Zaiyu Wang
    Ke Gao
    Feng Liu
    Chunhui Duan
    Fei Huang
    Yong Cao
    Science China(Chemistry), 2021, 64 (03) : 408 - 412
  • [27] Organoboron Polymer for 10% Efficiency All-Polymer Solar Cells
    Zhao, Ruyan
    Wang, Ning
    Yu, Yingjian
    Liu, Jun
    CHEMISTRY OF MATERIALS, 2020, 32 (03) : 1308 - 1314
  • [28] Side-chain optimization of perylene diimide-thiophene random terpolymer acceptors for enhancing the photovoltaic efficiency of all-polymer solar cells
    Qi, Qingchun
    Guo, Xiaotong
    Zhu, Bili
    Deng, Ping
    Zhan, Hongbing
    Yang, Junliang
    ORGANIC ELECTRONICS, 2020, 78
  • [29] Ternary polymerization strategy to approach 12% efficiency in all-polymer solar cells processed by green solvent and additive
    Liu, Hailu
    Wang, Linqiao
    Liu, Heng
    Guan, Min
    Su, Chun-Jen
    Jeng, U-Ser
    Zhao, Bin
    Weng, Chao
    You, Kuiyi
    Lu, Xinhui
    CHEMICAL ENGINEERING JOURNAL, 2022, 429
  • [30] Morphology control in high-efficiency all-polymer solar cells
    Zhou, Kangkang
    Xian, Kaihu
    Ye, Long
    INFOMAT, 2022, 4 (04)