Hydrogen Production via Chemical Looping Steam Reforming in a Periodically Operated Fixed-Bed Reactor

被引:90
作者
Solunke, Rahul D.
Veser, Goetz [1 ]
机构
[1] US DOE, Natl Energy Technol Lab, Pittsburgh, PA USA
关键词
REVERSE-FLOW REACTOR; CATALYTIC COMBUSTION; OXYGEN CARRIERS; REDOX; OXIDE; SUPPORTS; METHANE;
D O I
10.1021/ie100432j
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Chemical-looping steam reforming (CLSR) is a chemical-looping combustion (CLC) derived technology in which air is replaced by steam as oxidant. CLSR combines the inherent CO2 capture of CLC with the production of PEMFC-ready hydrogen streams without further purification steps. CLSR thus results in strong process intensification in hydrogen production. Here, we present results from a proof-of-concept study of CLSR of synthesis gas which combines thermodynamic screening for carrier selection, with synthesis and reactive test of highly active and high-temperature stable nanostructured oxygen carriers, and a reactor modeling study in order to demonstrate the feasibility of CLSR in a periodically operated fixed-bed reactor.
引用
收藏
页码:11037 / 11044
页数:8
相关论文
共 21 条
[1]   Thermal stabilization of catalyst supports and their application to high-temperature catalytic combustion [J].
Arai, H ;
Machida, M .
APPLIED CATALYSIS A-GENERAL, 1996, 138 (02) :161-176
[2]   A review of PEM hydrogen fuel cell contamination: Impacts, mechanisms, and mitigation [J].
Cheng, Xuan ;
Shi, Zheng ;
Glass, Nancy ;
Zhang, Lu ;
Zhang, Jiujun ;
Song, Datong ;
Liu, Zhong-Sheng ;
Wang, Haijiang ;
Shen, Jun .
JOURNAL OF POWER SOURCES, 2007, 165 (02) :739-756
[3]   Comparison of iron-, nickel-, copper- and manganese-based oxygen carriers for chemical-looping combustion [J].
Cho, P ;
Mattisson, T ;
Lyngfelt, A .
FUEL, 2004, 83 (09) :1215-1225
[4]   CATALYTIC COMBUSTION WITH PERIODIC-FLOW REVERSAL [J].
EIGENBERGER, G ;
NIEKEN, U .
CHEMICAL ENGINEERING SCIENCE, 1988, 43 (08) :2109-2115
[5]   Syngas redox (SGR) process to produce hydrogen from coal derived syngas [J].
Gupta, Puneet ;
Velazquez-Vargas, Luis G. ;
Fan, Liang-Shih .
ENERGY & FUELS, 2007, 21 (05) :2900-2908
[6]   Hydrogen production hy steam-iron process [J].
Hacker, V ;
Fankhauser, R ;
Faleschini, G ;
Fuchs, H ;
Friedrich, K ;
Muhr, M ;
Kordesch, K .
JOURNAL OF POWER SOURCES, 2000, 86 (1-2) :531-535
[7]   Chemical-looping combustion (CLC) for inherent CO2 separations-a review [J].
Hossain, Mohammad M. ;
de lasa, Hugo I. .
CHEMICAL ENGINEERING SCIENCE, 2008, 63 (18) :4433-4451
[8]   Fuel science in the year 2000: an introduction [J].
Huffman, GP ;
Wender, I .
FUEL PROCESSING TECHNOLOGY, 2001, 71 (1-3) :1-6
[9]   A NEW ADVANCED POWER-GENERATION SYSTEM USING CHEMICAL-LOOPING COMBUSTION [J].
ISHIDA, M ;
JIN, HG .
ENERGY, 1994, 19 (04) :415-422
[10]   Engineering high-temperature stable nanocomposite materials [J].
Kirchhoff, M ;
Specht, U ;
Veser, G .
NANOTECHNOLOGY, 2005, 16 (07) :S401-S408