In situ vertical characteristics of optical properties and heating rates of aerosol over Beijing

被引:33
作者
Tian, Ping [1 ]
Liu, Dantong [2 ]
Zhao, Delong [3 ]
Yu, Chenjie [4 ]
Liu, Quan [1 ]
Huang, Mengyu [1 ]
Deng, Zhaoze [5 ]
Ran, Liang [5 ]
Wu, Yunfei [6 ]
Ding, Shuo [2 ]
Hu, Kang [2 ]
Zhao, Gang [7 ]
Zhao, Chunsheng [7 ]
Ding, Deping [1 ,3 ]
机构
[1] Beijing Key Lab Cloud Precipitat & Atmospher Wate, Beijing 100089, Peoples R China
[2] Zhejiang Univ, Sch Earth Sci, Dept Atmospher Sci, Hangzhou 310027, Zhejiang, Peoples R China
[3] China Meteorol Adm, Field Expt Base Cloud & Precipitat Res North Chin, Beijing 100089, Peoples R China
[4] Univ Manchester, Ctr Atmospher Sci, Sch Earth & Environm Sci, Manchester M13 9PL, Lancs, England
[5] Chinese Acad Sci, Inst Atmospher Phys, Key Lab Middle Atmosphere & Global Environm Obsev, Beijing 100029, Peoples R China
[6] Chinese Acad Sci, Inst Atmospher Phys, CAS Key Lab Reg Climate Environm Temperate East A, Beijing 100029, Peoples R China
[7] Peking Univ, Dept Atmospher & Ocean Sci, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
BLACK-CARBON; BROWN CARBON; LIGHT-ABSORPTION; SOLAR ABSORPTION; CHINA; WAVELENGTH; POLLUTION; AETHALOMETER; ALBEDO; WINTER;
D O I
10.5194/acp-20-2603-2020
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Characterizing vertical profiles of aerosol optical properties is important because relying on only the surface or column-integrated measurements cannot unambiguously constrain the radiative impacts of aerosol. This study presents series of vertical profiles of in situ measured multi-wavelength optical properties of aerosols during three pollution events from November to December 2016 over the Beijing region. For all pollution events, the clean periods (CPs) before pollution initialization showed a higher scattering Angstrom exponent (SAE) and a smaller asymmetry parameter (g) with relatively uniform vertical structures. The heavy pollution periods (HPs) showed an increased particle size, causing these parameters to vary in the opposite way. During the transition periods (TPs), regional transport of aged aerosols at higher altitudes was found. The Aerosol Robotic Network (AERONET) aerosol optical depth (AOD) matched the in situ measurements within 10 %; however the AERONET absorption optical depth (AAOD) was 10 %-20% higher than the in situ measurements, and this positive discrepancy increased to 30% at shorter wavelengths. The absorption of brown carbon (BrC) was identified by the increased-absorption Angstrom exponent (AAE), and the heating rate of black carbon (BC) and BrC was estimated by computing the spectral absorption coefficient and actinic flux calculated by a radiative transfer model. BC and BrC had a heating rate of up to 0.18 and 0.05Kh(-1) in the planetary boundary layer (PBL), respectively, during the pollution period. The fraction of BrC absorption increased from 12% to 40% in the PBL from the CP to the HP. Notably, a higher contribution of BrC heating was found above the PBL under polluted conditions. This study paints a full picture of shortwave heating impacts of carbonaceous aerosols during different stages of pollution events and highlights the increased contribution of BrC absorption especially at higher altitudes during pollution.
引用
收藏
页码:2603 / 2622
页数:20
相关论文
共 89 条
[1]   Determining aerosol radiative properties using the TSI 3563 integrating nephelometer [J].
Anderson, TL ;
Ogren, JA .
AEROSOL SCIENCE AND TECHNOLOGY, 1998, 29 (01) :57-69
[2]   `Comparison of methods for deriving aerosol asymmetry parameter [J].
Andrews, E ;
Sheridan, PJ ;
Fiebig, M ;
McComiskey, A ;
Ogren, JA ;
Arnott, P ;
Covert, D ;
Elleman, R ;
Gasparini, R ;
Collins, D ;
Jonsson, H ;
Schmid, B ;
Wang, J .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2006, 111 (D5)
[3]   Seasonal differences in the vertical profiles of aerosol optical properties over rural Oklahoma [J].
Andrews, E. ;
Sheridan, P. J. ;
Ogren, J. A. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2011, 11 (20) :10661-10676
[4]   Comparison of AOD, AAOD and column single scattering albedo from AERONET retrievals and in situ profiling measurements [J].
Andrews, Elisabeth ;
Ogren, John A. ;
Kinne, Stefan ;
Samset, Bjorn .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2017, 17 (09) :6041-6072
[5]   Towards aerosol light-absorption measurements with a 7-wavelength Aethalometer:: Evaluation with a photoacoustic instrument and 3-wavelength nephelometer [J].
Arnott, WP ;
Hamasha, K ;
Moosmüller, H ;
Sheridan, PJ ;
Ogren, JA .
AEROSOL SCIENCE AND TECHNOLOGY, 2005, 39 (01) :17-29
[6]   Dependence of climate forcing and response on the altitude of black carbon aerosols [J].
Ban-Weiss, George A. ;
Cao, Long ;
Bala, G. ;
Caldeira, Ken .
CLIMATE DYNAMICS, 2012, 38 (5-6) :897-911
[7]   Aerosol radiative, physical, and chemical properties in Beijing during June 1999 [J].
Bergin, MH ;
Cass, GR ;
Xu, J ;
Fang, C ;
Zeng, LM ;
Yu, T ;
Salmon, LG ;
Kiang, CS ;
Tang, XY ;
Zhang, YH ;
Chameides, WL .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2001, 106 (D16) :17969-17980
[8]   Bounding the role of black carbon in the climate system: A scientific assessment [J].
Bond, T. C. ;
Doherty, S. J. ;
Fahey, D. W. ;
Forster, P. M. ;
Berntsen, T. ;
DeAngelo, B. J. ;
Flanner, M. G. ;
Ghan, S. ;
Kaercher, B. ;
Koch, D. ;
Kinne, S. ;
Kondo, Y. ;
Quinn, P. K. ;
Sarofim, M. C. ;
Schultz, M. G. ;
Schulz, M. ;
Venkataraman, C. ;
Zhang, H. ;
Zhang, S. ;
Bellouin, N. ;
Guttikunda, S. K. ;
Hopke, P. K. ;
Jacobson, M. Z. ;
Kaiser, J. W. ;
Klimont, Z. ;
Lohmann, U. ;
Schwarz, J. P. ;
Shindell, D. ;
Storelvmo, T. ;
Warren, S. G. ;
Zender, C. S. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2013, 118 (11) :5380-5552
[9]   Aerosol light scattering properties at Cape Grim, Tasmania, during the First Aerosol Characterization Experiment (ACE 1) [J].
Carrico, CM ;
Rood, MJ ;
Ogren, JA .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1998, 103 (D13) :16565-16574
[10]   Relating aerosol absorption due to soot, organic carbon, and dust to emission sources determined from in-situ chemical measurements [J].
Cazorla, A. ;
Bahadur, R. ;
Suski, K. J. ;
Cahill, J. F. ;
Chand, D. ;
Schmid, B. ;
Ramanathan, V. ;
Prather, K. A. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2013, 13 (18) :9337-9350