Prime decomposition of quadratic matrix polynomials

被引:0
作者
Tian, Yunbo [1 ]
Chen, Sheng [2 ]
机构
[1] Linyi Univ, Sch Math & Stat, Linyi 276000, Shandong, Peoples R China
[2] Harbin Inst Technol, Dept Math, Harbin 150001, Peoples R China
来源
AIMS MATHEMATICS | 2021年 / 6卷 / 09期
关键词
differential equation; matrix polynomials; factorization; matrix equation; matrix pencil; explicit solution;
D O I
10.3934/math.2021576
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the prime decomposition of a quadratic monic matrix polynomial. From the prime decomposition of a quadratic matrix polynomial, we obtain a formula of the general solution to the corresponding second-order differential equation. For a quadratic matrix polynomial with pairwise commuting coefficients, we get a sufficient condition for the existence of a prime decomposition.
引用
收藏
页码:9911 / 9918
页数:8
相关论文
共 16 条
  • [1] Campos C., 2020, NUMER LINEAR ALGEBR, V27, P2293, DOI DOI 10.1002/nla.2293
  • [2] On solutions of generalized Sylvester equation in polynomial matrices
    Chen, Sheng
    Tian, Yunbo
    [J]. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2014, 351 (12): : 5376 - 5385
  • [3] Cohn P.M., 1973, J INDIAN MATH SOC, V37, P61
  • [4] MATRIX EQUATIONS AX-XB = C AND AX-YB = C
    FLANDERS, H
    WIMMER, HK
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 1977, 32 (04) : 707 - 710
  • [5] Filters connecting isospectral quadratic systems
    Garvey, S. D.
    Lancaster, P.
    Popov, A. A.
    Prells, U.
    Zaballa, I.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (04) : 1497 - 1516
  • [6] Gobherg I., 2009, INDEFINITE LINEAR AL
  • [7] Jain SK, 2009, CONTEMP MATH, V480, P249
  • [8] Kazimirski P. S., 1976, THEOR APPL PROBL ALG, V119, P29
  • [9] Kazimirski P. S., 1978, MAT MET FIZ MEKH POL, V8, P3
  • [10] Krupnik I., 1992, LINEAR ALGEBRA APPL, V390, P239