Cathodic Corrosion of Metal Electrodes-How to Prevent It in Electroorganic Synthesis

被引:126
作者
Wirtanen, Tom [1 ]
Prenzel, Tobias [1 ]
Tessonnier, Jean-Philippe [2 ,3 ]
Waldvogel, Siegfried R. [1 ]
机构
[1] Johannes Gutenberg Univ Mainz, Dept Chem, D-55128 Mainz, Germany
[2] Iowa State Univ, Dept Chem & Biol Engn, Ames, IA 50011 USA
[3] Ctr Biorenewable Chem CBiRC, Ames, IA 50011 USA
基金
美国国家科学基金会;
关键词
ATOMIC-ABSORPTION SPECTROMETRY; DOPED DIAMOND ELECTRODES; ELECTROCHEMICAL REDUCTION; ELECTROLYTIC REDUCTION; LEADED BRONZE; L-CYSTINE; TETRAALKYLAMMONIUM CATIONS; ELECTROCATALYTIC ACTIVITY; PLATINUM NANOPARTICLES; SUPPORTING ELECTROLYTE;
D O I
10.1021/acs.chemrev.1c00148
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The critical aspects of the corrosion of metal electrodes in cathodic reductions are covered. We discuss the involved mechanisms including alloying with alkali metals, cathodic etching in aqueous and aprotic media, and formation of metal hydrides and organometallics. Successful approaches that have been implemented to suppress cathodic corrosion are reviewed. We present several examples from electroorganic synthesis where the clever use of alloys instead of soft neat heavy metals and the application of protective cationic additives have allowed to successfully exploit these materials as cathodes. Because of the high overpotential for the hydrogen evolution reaction, such cathodes can contribute toward more sustainable green synthetic processes. The reported strategies expand the applications of organic electrosynthesis because a more negative regime is accessible within protic media and common metal poisons, e.g., sulfur-containing substrates, are compatible with these cathodes. The strongly diminished hydrogen evolution side reaction paves the way for more efficient reductive electroorganic conversions.
引用
收藏
页码:10241 / 10270
页数:30
相关论文
共 278 条
[1]   Preparation of Metal Amalgam Electrodes and Their Selective Electrocatalytic CO2 Reduction for Formate Production [J].
Abbas, Syed Asad ;
Kim, Seong-Hoon ;
Saleem, Hamza ;
Ahn, Sung-Hee ;
Jung, Kwang-Deog .
CATALYSTS, 2019, 9 (04)
[2]   Electrocatalytic Hydrogenation of Biomass-Derived Organics: A Review [J].
Akhade, Sneha A. ;
Singh, Nirala ;
Gutierrez, Oliver Y. ;
Lopez-Ruiz, Juan ;
Wang, Huamin ;
Holladay, Jamie D. ;
Liu, Yue ;
Karkamkar, Abhijeet ;
Weber, Robert S. ;
Padmaperuma, Asanga B. ;
Lee, Mal-Soon ;
Whyatt, Greg A. ;
Elliott, Michael ;
Holladay, Johnathan E. ;
Male, Jonathan L. ;
Lercher, Johannes A. ;
Rousseau, Roger ;
Glezakou, Vassiliki-Alexandra .
CHEMICAL REVIEWS, 2020, 120 (20) :11370-11419
[3]   Degradation and deactivation of Sn catalyst used for CO2 reduction as function of overpotential [J].
Anawati ;
Frankel, G. S. ;
Agarwal, Arun ;
Sridhar, Narasi .
ELECTROCHIMICA ACTA, 2014, 133 :188-196
[4]  
[Anonymous], 1925, U.S. Patent, Patent No. 15667159
[5]  
[Anonymous], [No title captured]
[7]  
ARAI T, 1960, B CHEM SOC JPN, V33, P1018
[8]   Nanoscale morphological evolution of monocrystalline Pt surfaces during cathodic corrosion [J].
Arulmozhi, Nakkiran ;
Hersbach, Thomas J. P. ;
Koper, Marc T. M. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (51) :32267-32277
[9]  
AYYASWAMI A, 1983, INDIAN J CHEM A, V22, P555
[10]   ELECTROCHEMICAL REACTIONS .7. REDUCTION OF DIPHENYLIODONIUM SALTS [J].
AZOO, JA ;
COLL, FG ;
GRIMSHAW, J .
JOURNAL OF THE CHEMICAL SOCIETY C-ORGANIC, 1969, (18) :2521-&