Kernel quaternion principal component analysis and its application in RGB-D object recognition

被引:56
作者
Chen, Beijing [1 ,2 ,3 ]
Yang, Jianhao [1 ]
Jeon, Byeungwoo [3 ]
Zhang, Xinpeng [4 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Comp & Software, Jiangsu Engn Ctr Network Monitoring, Nanjing 210044, Jiangsu, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Jiangsu Collaborat Innovat Ctr Atmospher Environm, Nanjing 210044, Jiangsu, Peoples R China
[3] Sungkyunkwan Univ, Coll Informat & Commun Engn, Suwon 440746, South Korea
[4] Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200072, Peoples R China
关键词
Principal component analysis; Quaternion; Kernel function; RGB-D object recognition; COLOR IMAGE-ANALYSIS; FACE-RECOGNITION; FOURIER-TRANSFORMS; MOMENTS; PCA; HYPERCOMPLEX; TEXTURE;
D O I
10.1016/j.neucom.2017.05.047
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
While the existing quaternion principal component analysis (QPCA) is a linear tool developed mainly for processing linear quaternion signals, the quaternion representation (QR) used in QPCA creates redundancy when representing a color image signal of three components by a quaternion matrix having four components. In this paper, the kernel technique is used to improve the QPCA as kernel QPCA (KQPCA) for processing nonlinear quaternion signals; in addition, both RGB information and depth information are considered to improve QR for representing RGB-D images. The improved QR fully utilizes the four-dimensional quaternion domain. We first provide the basic idea of three types of our KQPCA and then propose an algorithm for RGB-D object recognition based on bidirectional two-dimensional KQPCA (BD2DKQPCA) and the improved QR. Experimental results on four public datasets demonstrate that the proposed BD2DKQPCA-based algorithm achieves the best performance among seventeen compared algorithms including other existing PCA-based algorithms, irrespective of RGB object recognition or RGB-D object recognition. Moreover, for all compared algorithms, consideration of both RGB and depth information is shown to achieve better performance in object recognition than considering only RGB information. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:293 / 303
页数:11
相关论文
共 54 条
[1]  
[Anonymous], 2002, Principal components analysis
[2]   The trinion Fourier transform of color images [J].
Assefa, Dawit ;
Mansinha, Lalu ;
Tiampo, Kristy F. ;
Rasmussen, Henning ;
Abdella, Kenzu .
SIGNAL PROCESSING, 2011, 91 (08) :1887-1900
[3]   Robust shape similarity retrieval based on contour segmentation polygonal multiresolution and elastic matching [J].
Attalla, E ;
Siy, P .
PATTERN RECOGNITION, 2005, 38 (12) :2229-2241
[4]   Subset based deep learning for RGB-D object recognition [J].
Bai, Jing ;
Wu, Yan ;
Zhang, Junming ;
Chen, Fuqiang .
NEUROCOMPUTING, 2015, 165 :280-292
[5]  
Bihan N.L., 2006, P IMA 7 C MATH SIGN, P1
[6]  
Blum M, 2012, IEEE INT CONF ROBOT, P1298, DOI 10.1109/ICRA.2012.6225188
[7]  
Bo L., 2013, EXPT ROBOTICS, P387, DOI DOI 10.1007/978-3-319-00065-7
[8]  
Browatzki B., 2011, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), P1189, DOI 10.1109/ICCVW.2011.6130385
[9]   Super-resolution of face images using kernel PCA-based prior [J].
Chakrabarti, Ayan ;
Rajagopalan, A. N. ;
Chellappa, Rama .
IEEE TRANSACTIONS ON MULTIMEDIA, 2007, 9 (04) :888-892
[10]  
Chan WL, 2004, 2004 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL III, PROCEEDINGS, P996